نگاشت خطی (تبدیل خطی)

چاپ
مقطع تحصیلی: عمومی

رای دهی: 4 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهغیر فعال سازی ستاره
 

تعریف نگاشت خطی: فرض کنید که \(W\)  و \(V\) دو فضای برداری بر روی میدان یکسان \(F\) باشند. تابع \(f:V \Rightarrow W\) را یک نگاشت خطی یا تبدیل خطی گویند، هرگاه به ازای هر \(u,v \in V\) و برای هر اسکالر \(c \in F\) که می‌گیریم، داشته باشیم:

۱. \(f(u+v) = f(u) + f(v)\)

۲. \(f(cu) = cf(u)\)

یا به ازای هر \(u,v \in V\) و برای هر اسکالر \(c \in F\) که می‌گیریم، می‌توان به طور خلاصه بیان نمود:

\(f(cu+v) = cf(u)+f(v)\)

نکته‌ای که باید در این تعریف مورد توجه قرار بگیرد، این است که یک تبدیل خطی بر روی فضاهای برداری با میدان یکسان قابل تعریف است. پس داریم، هرگاه \(f\) یک تبدیل خطی از فضای برداری \(V\) بر روی میدان \(F\) به فضای برداری \(W\) بر روی میدان \(K\) باشد، حتما \(K\) باید زیرمیدانی از \(F\) باشد تا \(f\) بتواند یک تبدیل خطی را تشکیل بدهد.


مثال ۱. فرض کنید که تابع \(T:\mathbb{R}^2\Rightarrow \mathbb{R}^3\) با ضابطه‌ای به صورت  \(T(x,y) = (x, x+y, 2x)\) باشد. آیا این  تابع یک تبدیل خطی است.

برای اثبات این موضوع که  تابع \(T\) یک تبدیل خطی است، به گونه زیر عمل می‌کنیم:

به ازای هر \(b=(x_2,y_2) \in \mathbb{R}^2\) و \( a=(x_1,y_1) \in \mathbb{R}^2\) و اسکالر \(c \in \mathbb{R}\) می‌گیریم، داریم:

\(T(ca+b) = T(c(x_1, y_1)+(x_2, y_2)) \\ =T(cx_1+x_2 , cy_1+y_2) = (cx_1+x_2, cx_1+x_2 +cy_1+y_2, 2cx_1+x_2) \\ = (cx_1, cx_1+cy_1, 2cx_1)+(x_2, x_2+y_2, 2x_2) = cT(x_1,y_1)+T(x_2,y_2)\)

پس با توجه به عبارت بالا می‌توان گفت که تابع \(T(x,y)\) یک تبدیل خطی را تشکیل می‌دهد.


مثال ۲. فرض کنید که \(V\) یک فضای برداری بر روی میدان \(F\) باشد. در این صورت تابع به شکل زیر، آیا یک تبدیل خطی است یا خیر؟

 \(T:V \times V \rightarrow F\)

\(Tv = 1\)

برای اینکه نشان دهیم تابع بالا یک تبدیل خطی است، کافیست ثابت کنیم:

\(\forall x, y \in V,\:\: \forall a \in F,\:\;  T(ax+y)= aT(x)+T(y)\)

همانطور که از ضابطه بالا بر می‌آید داریم:

 \(T(ax+y) =1\) 

در حالیکه داریم:

\(aT(x) + T(y) = a \times 1+1 = a+1\)

که با توجه به اینکه \(T(ax+y) \neq aT(x)+T(y)\) شده است. لذا \(T\) یک تبدیل خطی نمی‌باشد.


تمرین ۱. فرض کنید که \(V\)  فضای برداری تمام توابع چندجمله‌ای از مرتبه \(n\) باشد. در این صورت عمل مشتق‌گیری بر روی این فضای برداری یک تبدیل خطی است.


تمرین ۲. فرض کنید که \(V\)  فضای برداری تمام توابع حقیقی مقدار و پیوسته باشد. در اینصورت تابع زیر آیا یک تبدیل خطی است؟

\(f(x) \in V, \:\: T(f(x)) = \int_{0}^{x} f(t)dt\)


تمرین ۳. آیا تابع زیر یک تبدیل خطی است؟

\(T: \mathbb{R}^2 \Rightarrow \mathbb{R}^3\)

\(T(x,y) = (x^2, 2y, x-y)\)


تمرین ۴. فرض کنید که \(T: \mathbb{R}^2 \Rightarrow \mathbb{R}^3\) یک تبدیل خطی باشد بطوریکه \(T(1,2) = (1,0,3)\) و \(T(1,5) = (0,1,2)\) باشند. در این صورت \(T(0,2)\) را محاسبه کنید.


مثال ۳. فرض کنید \(T: \mathbb{R}^2 \Rightarrow \mathbb{R}^2\) یک تبدیل خطی و \(T(3,0) = (1,2) \) و \( T(2,1) = (5,1)\) باشند. در اینصورت مقدار عبارت \(T(2,3)\) را بدست آورید.

برای بدست آوردن \(T(2,3)\) به گونه زیر عمل می‌کنیم:

۱. در ابتدا \((2,3)\) را به صورت ترکیب خطی از \((3,0)\) و \((2,1)\) می‌نویسیم. برای این موضوع مقدار \(\beta\) و \( \alpha\)ای موجود هستند به قسمی که داریم:

\((2,3) = \alpha(2,1) +\beta (3,0)\)

لذا دستگاه زیر را به دست می‌آوریم:

\(\begin{cases}2 \alpha + 3 \beta = 2\\ \alpha = 3\end{cases} \Longrightarrow \begin{cases}\beta = \frac{-4}{3}\\ \alpha = 3\end{cases}\)

پس داریم:

\((2,3) = 3(2,1) - \frac{-4}{3}(3,0)\)

از آنجا که \(T\) یک تبدیل خطی است، داریم:

\(T(2,3) = T(3(2,1) - \frac{4}{3}(3,0)) = 3T(2,1) - \frac{4}{3} T(3,0) = 3(5,1) - \frac{4}{3}(1,2) = (15 - \frac{4}{3} , 3- \frac{8}{3} = (\frac{41}{3} , \frac{1}{3})\)

پس داریم:

\(T(2,3) = (\frac{41}{3} , \frac{1}{3})\)