فضای ضرب داخلی

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

تعریف فضای ضرب داخلی: فرض کنید که \(V\) یک فضای برداری بر روی میدان \(F\) باشد. تابع زیر را بر روی این فضای برداری تعریف می‌کنیم:

\(<. , .> : V \times V \rightarrow F\)

که در شرایط زیر صدق می‌کند:

۱. به ازای هر \( v \in V\) می‌گیریم:

 \(<v , v> \geq 0\)

۲. اگر \( v,u\in V\) باشد و هرگاه اسکالر \(a \in F\) می‌گیریم، داریم:

\(<au , v> = a<u , v>\)

۳. برای هر \(u,v,w \in V\) می‌گیریم، داریم:

\( <u+v , w> = <u , w> + <v , w>\)

۴. برای هر \(u \in V\) می‌گیریم داریم، اگر \(<u,u> = 0\) است و اگر تنها اگر \( u=0\) باشد.

در اینصورت این فضای برداری همراه با شریط بالا یک فضای ضرب داخلی است. 


مثال ۱. فرض کنید \(V\)  فضای برداری تمام توابع پیوسته حقیقی بر روی بازه \([-1,1]\) باشد. ثابت کنید که این فضای برداری همراه با تابع زیر یک فضای ضرب داخلی است.

\(<. , .> = v \times v \Longrightarrow \mathbb{R}\)

\(<f , g> =\int_{-1}^{1} f(x)g(x)dx \)

برای اثبات این موضوع که این فضا یک فضای ضرب داخلی است، باید ثابت کنیم که تابع مورد نظر یک ضرب داخلی است. لذا داریم:

۱. برای هر \( f(x) \in V \) می‌گیریم، داریم:

\(<f(x) , f(x)> = \int_{-1}^{1} f(x)f(x)dx = \int_{-1}^{1} f(x)^2 dx \)

که این مقدار انتگرال همواره بزرگتر مساوی صفر خواهد بود.

۲ .برای هر \(f(x),g(x),h(x) \in V\) می‌گیریم، داریم:

\(<f(x) + g(x) , h(x)>=\int_{-1}^{1} (f(x)+g(x))h(x)dx = \int_{-1}^{1} (f(x)h(x) + g(x) h(x)) dx = \int_{-1}^{1} f(x) h(x) dx + \int_{-1}^{1} g(x)h(x),d(x) = <f(x) , h(x)> + <g(x) , h(x)> \)

۳ .برای هر \(f(x),g(x) \in V\) و \(\lambda \in \mathbb{R}\) بگیریم، داریم:

\(<\lambda f(x),g(x)> = \int_{-1}^{1} \lambda f(x) g(x) dx = \lambda \int_{-1}^{1} f(x) g(x) dx = \lambda <f(x) , g(x)>\)

۴ .برای هر \(f(x),g(x)(n) \in V\) می‌گیریم، داریم:

\(<f(x),g(x)> = \int_{-1}^{1} f(x) g(x) dx = <g(x) , f(x)>\)

چون این توابع حقیقی مقدار هستند، همواره رابطه بالا برقرار خواهد بود.


ویژگی فضای ضرب داخلی: ویژگی‌های اساسی که بر روی فضای ضرب داخلی برقرارند عبارتند از:

فرض کنید که \(u \in V\) باشد و \(\lambda \in F\) یک اسکالر باشد. لذا داریم:

۱. برای هر \( u \in V\) داریم:

\(<0 , u> = 0\)

۲. برای هر \( u \in V\) می‌گیریم، داریم:

 \( <u , 0> =0\)

۳. برای هر \( u,v,w \in V\) می‌گیریم، داریم:

 \( <u , v+w> = <u , v> + <u , w>\)

۴. برای هر \( u,v \in V\) و \( \lambda \in F\) می‌گیریم، داریم:

 \(<u , \lambda w> = \overline{\lambda}<u , w> \)


تمرین ۱. ویژگی‌های ۱ تا ۴ را بر روی فضای ضرب داخلی ثابت کنید.

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

حل تمرین های کتاب ریاضی هشتم خیلی سبز  فصل نهم حل تمرین های کتاب ریاضی هشتم خیلی سبز فصل نهم بازدید (255)
حل تمرین های کتاب ریاضی هشتم خیلی سبز ف...
جزوه معادلات دیفرانسیل استاد یوسف نژاد، دانشگاه صنعتی شریف بهار 1397 جزوه معادلات دیفرانسیل استاد یوسف نژاد، دانشگاه صنعتی شریف بهار 1397 بازدید (163)
جزوه معادلات دیفرانسیل استاد یوسف نژاد، ...
جزوه جبر یک دکتر غلامزاده محمودی دانشگاه صنعتی شریف 96-97 جزوه جبر یک دکتر غلامزاده محمودی دانشگاه صنعتی شریف 96-97 بازدید (224)
جزوه جبر یک دکتر غلامزاده محمودی دانشگاه...
حل تمرین های کتاب کار ریاضی هفتم خیلی سبز  فصل  نهم حل تمرین های کتاب کار ریاضی هفتم خیلی سبز فصل نهم بازدید (237)
حل تمرین های کتاب کار ریاضی هفتم خیلی سب...
حل تمرین های کتاب کار ریاضی هفتم خیلی سبز  فصل  هشتم حل تمرین های کتاب کار ریاضی هفتم خیلی سبز فصل هشتم بازدید (310)
حل تمرین های کتاب کار ریاضی هفتم خیلی سب...

فایل های تصادفی

پاسخ تشریحی پایانترم ریاضی عمومی 1 صنعتی شاهرود 13961016 هماهنگ پاسخ تشریحی پایانترم ریاضی عمومی 1 صنعتی... بازدید (5938)
پاسخ تشریحی پایانترم ریاضی عمومی یک صنعت...
مبانی ریاضیات، استیوارت، تال، مقدمه و فهرست مطالب مبانی ریاضیات، استیوارت، تال، مقدمه و فه... بازدید (9757)
مقدمه و فهرست مطالب کتاب مبانی ریاضیات، ...
حل تمرین های کتاب کار ریاضی هفتم خیلی سبز  فصل دوم حل تمرین های کتاب کار ریاضی هفتم خیلی سب... بازدید (1565)
حل تمرین های کتاب کار ریاضی هفتم خیلی سب...
مقدمه و فهرست مطالب کتاب منطق، مجموعه ها، اعداد دکتر میزاوزیری مقدمه و فهرست مطالب کتاب منطق، مجموعه ها... بازدید (9302)
مقدمه و فهرست مطالب کتاب منطق، مجموعه ها...
پاسخ تشریحی آزمون پایان ترم محاسبات عددی دانشگاه صنعتی شریف آذر ماه 1395 پاسخ تشریحی آزمون پایان ترم محاسبات عددی... بازدید (3628)
پاسخ تشریحی آزمون پایان ترم محاسبات عددی...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (30887)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (23216)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (22281)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (20500)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (20217)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

آمار سایت

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا