حاصلضرب ماتریس ها

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

تعریف ضرب ماتریس دو ماتریس: فرض کنیم ‎\(‎ A‎ = ‌‎[a_{ij}]_{m ‌‎\times ‎n} \)‌‌‎ و ‎\( B‎ =‎ [‎‎b_{ij}]_{n ‌‌‌‎\times k} ‌‎\)‎ ‏دو ماتريس ‏باشند. حاصلضرب ماتریس A در ماتریس B برابر با ماتریس ‎\( C‎ =‎ [‎ ‎c_{ij} ‎] ‌‌‌‎\)‌‎ از مرتبه \(m ‌‎\times k\) است که آن را با نماد ‎AB‌‏ نشان می‌دهیم و به صورت زیر تعریف می‌کنیم:

 ‌‎\( C_{ij} =‎ ‌‎\sum_{r=1}^‎{n} {‎a_{ir}b_{rj}} ‎ ‎\forall 1‎ ‌‎\leq i ‌‌‌‎\leq m‎ ,‎ 1‎ ‎\leq j‎ ‎\leq n ‌‌‌‎\)‌‎

تعریف ریاضی بالا بیان می‌کند، برای به دست آوردن درایه ijام ماتريس C کافی است، سطر iام ماتريس A را در ستون jام ماتريس B ضرب کنید. شکل زیر کمک شایانی به درک هرچه بهتر این موضوع خواهد نمود. 


مثال ۱. ضرب ماتریس زیر را به دست آورید.

۱. \( A = \begin{bmatrix}1 & -‎i‎ & 1 \\ i & 0 & 3 \\ 1 & 3 & 2 \end{bmatrix} \)‎ , \( B = \begin{bmatrix}0 & -‎i‎ & 2 \\ 5 & 0 & 3i \\ i+1 & 3 & 2 \end{bmatrix} \)‎

با توجه به تعریف بالا برای ضرب ماتریس‌ها داریم:

\( A.B= \begin{bmatrix}1 & -‎i‎ & 1 \\ i & 0 & 3 \\ 1 & 3 & 2 \end{bmatrix}\begin{bmatrix}0 & -‎i‎ & 2 \\ 5 & 0 & 3i \\ i+1 & 3 & 2 \end{bmatrix} \\ = \begin{bmatrix}1\times0-i\times 5 + 1\times (i+1) &1\times(-‎i)+0\times (-i)+1\times 3‎ & 1\times 2 +(-i)\times 3i + 1\times 2\\ i\times 0+0\times 5+3\times (i+1) & i\times (-i)+0+3\times 3 & i\times 2+0\times 3i+3\times 2 \\ 1\times 0+3\times 5+2\times (i+1) & 1\times (-i)+3\times 0+2\times 3 & 1\times 2+3\times 3i+2\times 2 \end{bmatrix} \)‎

\(= \begin{bmatrix}4i+1 & -‎i‎+3 & 4 \\ 3i+3 & 10 & 6+2i \\ 2i+17 & 6-i& 6+9i\end{bmatrix}\)


نکته ۱. زمانی می‌توانید ماتریس A‌‌‌‏ را در ماتریس B‌‌‎ ضرب کنید که تعداد ستون‌های ماتریس A‌‌‎ با تعداد سطرهای ماتریس B‌‌‎ برابر باشد.

از شکل بالا متوجه خواهید شد که دو ماتریس زیر قابل ضرب شدن نیستند، زیرا با توجه به تعریف ضرب ماتریسی حتما باید تعداد ستون‌های ماتریس اول با تعداد سطرهای ماتریس دوم برابر باشند.  


مثال ۲. حاصلضرب ماتریس‌های زیر را بدست آورید.

۱. ‎\( A = \begin{bmatrix}1 & 5 & 7 \\ 8 & 9 & 2 \end{bmatrix} , ‎B‎ = \begin{bmatrix}1 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}‎ \) ‌

    ⇒ \(AB= \begin{bmatrix}1 & 5 & 7 \\ 8 & 9 & 2 \end{bmatrix}\begin{bmatrix}1 & 2 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}‎\) = \(\begin{bmatrix}1 & 2+5+7 \\ 8 & 16+9+2 \end{bmatrix}\)  ⇒  \(\begin{bmatrix}1 & 14 \\ 8 & 27 \end{bmatrix}\)

۲. ‎\( A = \begin{bmatrix} 5 & 7 \end{bmatrix} , ‎B‎ = \begin{bmatrix} 8 & 9 \end{bmatrix} \)‎

با توجه به نکته ۱، باید تعداد ستون‌های ماتریس A با تعداد سطرهای ماتریس B یکسان باشد. اما همانطور که مشاهده می‌کنید تعداد ستون‌های ماتریس A برابر با ۲ و تعداد سطرهای ماتریس B برابر با ۱ می‌باشد. در نتیجه با توجه به نکته ۱، دو ماتریس فوق قابل ضرب شدن نمی‌باشند. 

۳. ‎\( A = \begin{bmatrix} 5 & 4 ‎\\ 2‎ &‎ ‎2‎ \end{bmatrix} , ‎B‎ = \begin{bmatrix} 1 & 2 ‎\\ 0‎ & ‎1‎ \end{bmatrix} \)‌‎

   ⇒ \( AB = \begin{bmatrix} 5 & 4 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 14\\ 2 & 6 \end{bmatrix}\)


تعریف توان یک ماتریس: ‏فرض کنید که ‌‏A‌‌‌‎ یک ماتریس\(‎ n ‌‌‌‎\times n ‌‌‌‎\)‌‌‏ باشد. در این صورت توان ‎k‌‏ام ماتریس A‎‎ به این معنی است که ‎ k‌‏بار‎ ماتریس A‌‌‎ را در خودش ضرب نمایید.

‎\(‎ A‎ ‎\times ‎... ‌‎\times A‎ =‎ ‎A^{k} ‌‎\) ‌‎


مثال ۳. توان سوم ماتریس مربعی زیر را به دست آورید. 

\(A= \begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\)

\(A^3= A.A.A=\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix} = \begin{bmatrix} 1+4 & 2+4 \\ 2+4‎ &‎ ‎4+4‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}\)

⇒ = \(\begin{bmatrix} 5 & 6 \\ 6 &‎ ‎8‎ \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 2‎ &‎ ‎2‎ \end{bmatrix}= \begin{bmatrix} 17 & 22 \\ 2‎2 &‎ ‎28‎ \end{bmatrix}\)


نکته ۲. دقت کنید که دو ماتریس مربعی هم مرتبه ‎A‌‏ و ‎B‌‌‏، نسبت به ضرب ماتریسی خاصیت جابه‌جایی ندارند.


مثال ۴. بررسی کنید که رابطه AB=BA نسبت به ضرب ماتریسی برقرار نمی‌باشد؟

برای این منظور کافی است که دو ماتریس مثال بزنید که این موضوع را نقض کند. دو ماتریس زیر را در نظر بگیرید:

\(A=\begin{bmatrix} 0 & 1 \\ 1 &‎ ‎1‎ \end{bmatrix} , B=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\)

 \(AB= \begin{bmatrix} 0 & 1 \\ 1 &‎ ‎1‎ \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix}0 & 1 \\ 1 & 2 \end{bmatrix}\)

 \(BA= \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} =\begin{bmatrix} 1 & 2 \\ 1& 1\end{bmatrix}\)

در نتیجه ضرب ماتریسی دارای خاصیت جابه‌جایی نمی‌باشد.


تمرین. حاصلضرب ماتریس‌های زیر را در صورت امکان به دست آورید.

1. \( A=\begin{bmatrix} 5 & 1 & 0\\ 2 & 1 & 3 \end{bmatrix} , B= \begin{bmatrix} 8 & 1 \\ 1& 1\end{bmatrix}\)

۲. \( A=\begin{bmatrix} a & b \\ 2 & c \end{bmatrix} , B= \begin{bmatrix} 8 & 0 \\ 0 & 1 \\3 & q \end{bmatrix}\)

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل چهارم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل چهارم بازدید (106)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...
دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش بازدید (209)
مقدمه و فهرست مطالب به همراه دو فصل اول ...
آمادگی برای امتحان ریاضی عمومی - انتگرال دوگانه و سه گانه آمادگی برای امتحان ریاضی عمومی - انتگرال دوگانه و سه گانه بازدید (389)
مسائل حل شده در مبحث انتگرال دوگانه و سه...
جزوه کامل فضاهای متریک استاد برزور جزوه کامل فضاهای متریک استاد برزور بازدید (473)
جزوه کامل فضاهای متریک استاد برزور ...
حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل سوم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل سوم بازدید (608)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...

فایل های تصادفی

مقدمه و فهرست مطالب تحقیق در عملیات 1 پیام نور مقدمه و فهرست مطالب تحقیق در عملیات 1 پی... بازدید (11697)
مقدمه و فهرست مطالب کتاب تحقیق در عملیات...
آمادگی برای امتحان ریاضی عمومی - حد و پیوستگی توابع چند متغیره آمادگی برای امتحان ریاضی عمومی - حد و پی... بازدید (609)
آمادگی برای امتحان ریاضی عمومی فصل حد و ...
پاسخنامه تشریحی برنامه سازی پیشرفته پیام نور ترم دوم 94-93 همراه با برنامه پاسخنامه تشریحی برنامه سازی پیشرفته پیام... بازدید (11852)
پاسخنامه کاملا تشریحی برنامه سازی پیشرفت...
یادگیری ریاضیات به عنوان زبان دوم جلد اول دکتر میرزاوزیری یادگیری ریاضیات به عنوان زبان دوم جلد او... بازدید (3787)
فایل pdf کتاب یادگیری ریاضیات به عنوان ز...
پاسخ تشریحی پایانترم ریاضی عمومی دو صنعتی شریف مورخ 13970331 پاسخ تشریحی پایانترم ریاضی عمومی دو صنعت... بازدید (5465)
پاسخ تشریحی پایانترم ریاضی عمومی دو صنعت...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (40333)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (27766)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (26875)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (25177)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (24763)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

امنیت در پرداخت ها با

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا