ماتریس خودتوان

مقطع تحصیلی: عمومی

رای دهی: 4 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهغیر فعال سازی ستاره
 

ماتریس خود توان: فرض کنید ‎A‌‏ یک ماتریس ‌‎ \( n \times n \) ‎ ‏باشد. ماتریس ‌‏A‎ را خود توان نامیم، هرگاه توانش با خودش برابر باشد یعنی رابطه زیر برقرار باشد:

‌‎\( A \times A = A‌‎^{2} = A \)‌‌‌‎


مثال ۱. کدام یک از ماتریسهای زیر خود توان هستند.

۱. \(A=\begin{bmatrix}-1&1&1\\-1&1&1\\-1&1&1\\ \end{bmatrix}\)

برای بررسی خودتوانی ماتریس فوق کافی است ماتریس A را یکبار در خودش ضرب نمایید. لذا داریم:

۱. \(A*A=\begin{bmatrix}-1&1&1\\-1&1&1\\-1&1&1\\ \end{bmatrix} *‌ \begin{bmatrix}-1&1&1\\-1&1&1\\-1&1&1\\ \end{bmatrix} = \begin{bmatrix}1-1-1&-1+1+1&-1+1+1\\+1-1-1&-1+1+1&-1+1+1\\1-1-1&-1+1+1&-1+1+1\\ \end{bmatrix} = \begin{bmatrix}-1&1&1\\-1&1&1\\-1&1&1\\ \end{bmatrix}\)

همانطور که مشاهده می‌کنید، ماتریس حاصل شده با ماتریس اولیه برابر می‌باشد. لذا طبق تعریف ماتریس خود توان این ماتریس، یک ماتریس خود توان می‌باشد.

۲. \(B =\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}\end{bmatrix}\)

برای بررسی خودتوانی  ماتریس B کافی است آن را یکبار در خودش ضرب نماییم. لذا داریم:

۲. \(B*B =\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}\end{bmatrix}*\begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}\end{bmatrix} = \begin{bmatrix}\frac{1}{4}+\frac{1}{4}&\frac{1}{4}+\frac{1}{4}\\ \frac{1}{4}+\frac{1}{4}& \frac{1}{4}+\frac{1}{4}\end{bmatrix} = \begin{bmatrix}\frac{1}{2}&\frac{1}{2}\\ \frac{1}{2}& \frac{1}{2}\end{bmatrix}\)


تمرین ۱. بررسی کنید ماتریس زیر خود توان است.

\( C=\begin{bmatrix}\frac{2}{3}&-\frac{1}{3}&-\frac{1}{3}\\-\frac{1}{3}&\frac{2}{3}&-\frac{1}{3}\\-\frac{1}{3}&-\frac{1}{3}&\frac{2}{3}\end{bmatrix} \)


نکته ۱. فرض کنید A‌‏ ماتریس مربعی خود توان باشد. در اینصورت به ازای هر عدد طبیعی n‌‌‎ داریم:

‎\(‌‌‎A^{n}=A‎\)‎


نکته ۲. فرض کنید که A‌‌‎ یک ماتریس خود توان باشد. ثابت کنید که I‎ -‎ A یک ماتریس خود توان است.

برا بررسی خود توانی  ماتریس I-A کافی است، این ماتریس را یکبار در خودش ضرب نمایید. لذا داریم:

\((I-A)*(I-A)=(I-A)^{2}=I^2-2AI+A^2=I-2A+A=I-A\)

همانطور که مشاهده می‌کنید I-A یک ماتریس خودتوان خواهد شد.


تمرین ۲. فرض کنید A یک ماتریس مربعی \(n \times n\) و خود توان باشد. در این صورت عبارت زیر را ثابت کنید.

\(\forall n‎\in \mathbb{N‌‎}, (I+A)^{n}=‎I‎+‎(2^{n} ‎-1)A‎\)‌‎

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

راهنما و تشریح المسائل معادلات دیفرانسیل معمولی و کاربردهای آن، جورج اف سیمونز، لطفی، مهدیانی راهنما و تشریح المسائل معادلات دیفرانسیل معمولی و کاربردهای آن، جورج اف سیمونز، لطفی، مهدیانی بازدید (161)
کتاب راهنما و حل المسائل معادلات دیفرانس...
حل تمرین های کتاب ریاضی هشتم خیلی سبز  فصل نهم حل تمرین های کتاب ریاضی هشتم خیلی سبز فصل نهم بازدید (1411)
حل تمرین های کتاب ریاضی هشتم خیلی سبز ف...
جزوه معادلات دیفرانسیل استاد یوسف نژاد، دانشگاه صنعتی شریف بهار 1397 جزوه معادلات دیفرانسیل استاد یوسف نژاد، دانشگاه صنعتی شریف بهار 1397 بازدید (1318)
جزوه معادلات دیفرانسیل استاد یوسف نژاد، ...
جزوه جبر یک دکتر غلامزاده محمودی دانشگاه صنعتی شریف 96-97 جزوه جبر یک دکتر غلامزاده محمودی دانشگاه صنعتی شریف 96-97 بازدید (1433)
جزوه جبر یک دکتر غلامزاده محمودی دانشگاه...
حل تمرین های کتاب کار ریاضی هفتم خیلی سبز  فصل  نهم حل تمرین های کتاب کار ریاضی هفتم خیلی سبز فصل نهم بازدید (1419)
حل تمرین های کتاب کار ریاضی هفتم خیلی سب...

فایل های تصادفی

پاسخ تشریحی میانترم آمار و احتمال مهندسی شریف 13950902 استاد تقوی طلب پاسخ تشریحی میانترم آمار و احتمال مهندسی... بازدید (4654)
پاسخ تشریحی میانترم آمار و احتمال مهندسی...
پاسخ تشریحی پایانترم ریاضی عمومی یک صنعتی شریف 13940317 دکتر فرهادی پاسخ تشریحی پایانترم ریاضی عمومی یک صنعت... بازدید (7308)
پاسخ تشریحی پیانترم ریاضی عمومی یک صنعتی...
کتاب سفر به شهر ریاضی دکتر میرزاوزیری کتاب سفر به شهر ریاضی دکتر میرزاوزیری... بازدید (2557)
کتاب سفر به شهر ریاضی دکتر میرزاوزیری...
پاسخ تشریحی ریاضی دهم نوبت اول 13951011 نمونه دولتی شهید علی محمدی منطقه 2 تهران پاسخ تشریحی ریاضی دهم نوبت اول 13951011 ... بازدید (9697)
پاسخ کاملا تشریحی نمونه سوال ریاضی دهم ن...
پاسخنامه آزمون میانترم معادلات دیفرانسیل دانشگاه شاهرود 13950824 پاسخنامه آزمون میانترم معادلات دیفرانسیل... بازدید (11000)
پاسخ آزمون میانترم معادلات دیفرانسیل دان...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (33515)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (24969)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (24065)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (22290)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (21933)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

آمار سایت

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا