ویژگی ماتریس‌های متقارن

چاپ
مقطع تحصیلی: دوره دوم متوسطه

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 
ترانهاده ماتریس  

ویژگی‌ ماتریس‌های متقارن: در این مطلب سعی داریم، ویژگی‌‌هایی را که بر روی ماتریس‌های متقارن صدق می‌کنند، را بیان کنیم.

ویژگی ۱. فرض کنید که \(A\) و \(B\) دو ماتریس مربعی و متقارن باشند. در اینصورت \( A+B \) متقارن خواهد بود.

زیرا با توجه به ویژگی‌هایی که برای ترانهاده یک ماتریس و  ماتریس‌های متقارن \(A\) و \(B\)  گفته شد، داریم:

\( (A+B)^{T} = A^{T} + B^{T} = A + B \)


مثال ۱- فرض کنید که دو ماتریس متقارن \(A\) و \(B\) به صورت زیر بیان شده باشند.

\( A = \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix} \)

\( B = \begin{bmatrix} i & o \\ 0 & i \end{bmatrix} \)

در اینصورت \( A + B \) متقارن نخواهد شد. زیرا با توجه به ویژگی ۱، برای اینکه مجموع دو ماتریس متقارن باشد، باید هر دو ماتریس‌ \(A\) و \(B\) متقارن باشند که در این مجموع، \(B\) متقارن نیست.


ویژگی ۲. اگر A ماتریس مربعی و متقارن باشد. در اینصورت \( \lambda A \) نیز برای اسکالر \( \lambda \) متقارن خواهد شد.


تمرین ۱. فرض کنید که \( A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 3 & 5 & 1 \end{bmatrix} \) و \( \lambda = i \) باشد. در اینصورت آیا  \( \lambda A \) متقارن است؟


ویژگی ۳. فرض کنید که \(A\) و \(B\) دو ماتریس متقارن باشند. در اینصورت \( AB \) در حالت کلی متقارن نخواهد بود. برای اینکه دو ماتریس‌ \( AB \) متقارن باشند، حتما باید این دو ماتریس‌ تعویض پذیر باشند. با توجه به ویژگی‌های ترانهاده یک ماتریس‌ داریم:

\( (AB)^{T} = B^{T} A^{T} \)

حال چون \(A\) و \(B\) متقارن هستند، لذا \( A^{T} = A \) ،\( B^{T} = B \) و اینکه \( AB = BA \) است. پس داریم:

\( B^{T} A^{T} = BA = AB \)


مثال ۲. فرض کنید دو ماتریس‌ \(A\) و \(B\) به صورت زیر بیان شده باشند. نشان دهید که \( AB \) لزوما متقارن نیست.

فرض کنید که دو ماتریس‌ A و B را به صورت زیر تعریف کرده باشیم:

\( A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \)

\( B = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \)

در اینصورت داریم:

⇒ \( AB = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 15 & 6 \end{bmatrix} \)

⇒ \( BA = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 15 \\ 3 & 6 \end{bmatrix} \)

پس در نتیجه \( AB \neq BA \) می‌باشد.


ویژگی ۴. فرض کنید که A یک ماتریس متقارن باشد. در اینصورت هر توانی از ماتریس‌ A هم متقارن خواهد شد. یعنی داریم:

\( \forall n \in N (A^{n})^{T} = (A^{T})^{n} = A^{n} \)


ویژگی ۵. فرض کنید که \(A\) یک ماتریس متقارن باشد، هرگاه \( f(x) \) یک تابع چندجمله‌ای به شکل زیر باشد:

\( f(x) = a_{n} x^{n} + a_{n-1} x^{n-1} + ... + a_0 \)

در اینصورت \( f(A) \) هم یک ماتریس متقارن خواهد بود.


مثال ۳. فرض کنید که \( A = \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} \) یک ماتریس متقارن باشد. همچنین تابع \( f(x) = x^2 + x \) را در نظر بگیرید. نشان دهید که \( f(A) \) هم متقارن است.

\( f(A) = A^2+A = \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 26 & 5 \\ 5 & 25 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 27 & 10 \\ 10 & 25 \end{bmatrix} \)

با توجه به تعریف ماتریس‌های متقارن می‌بینیم که ماتریس‌ حاصل شده نسبت به قطر اصلی متقارن می‌باشند.


تمرین ۲. فرض کنید که A یک ماتریس مربعی باشد. آیا ماتریس \( AA^{T} \) متقارن است؟


تمرین ۳. فرض کنید که A و B ماتریس‌های مربعی باشند. آیا ماتریس \( AB^{T} - BA^{T} \) متقارن است؟


تمرین ۴. فرض کنید که A و B ماتریس‌های مربعی باشند. آیا ماتریس \( AB^{T} + B^{T}A \) متقارن است؟


تمرین ۵. فرض کنید که \( A = \begin{bmatrix} 1 & 5 & 7 \\ 5 & 0 & i \\ 7 & i & i \end{bmatrix} \) باشد. نشان دهید که \( f(A) \) با تابع چندجمله‌ای  به‌ صورت زیر یک ماتریس متقارن است.

\( f(x) = x^3 + ix \)