ماتریس پاد متقارن

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

تعریف ماتریس پاد متقارن: فرض کنید که \( A \) یک ماتریس مربعی از مرتبه \( n \times n \) باشد. ماتریس \( A \) را پاد متقارن (یا متقارن کج) گویند، هرگاه داشته باشیم:

\( A^{T} = -A \)

در واقع این موضوع بیان می‌کند که رابطه زیر بین درایه‌های ماتریس پاد متقارن A برقرار است:

\( \forall 1 \leq j , j \leq n ;      a_{ij} = -a_{ji} \)

از رابطه بالا می‌توانیم نتیجه بگیریم که درایه‌های قطر اصلی یک ماتریس پادمتقارن صفر خواهد بود زیرا داریم:

\( \forall 1 \leq i \leq n , a_{ii} = -a_{ii} \Longrightarrow a_{ii} = 0 \)

شکل زیر یک ماتریس پادمتقارن را نشان می دهد، دقت کنید که درایه های روی قطر اصلی آن صفر می‌باشد. 


مثال ۱. بررسی کنید کدام یک از ماتریسهای زیر پادمتقارن است.

۱. \( A = \begin{bmatrix} 1 & -5 & 2 \\ 5 & 0 & i \\ -2 & -i & 0 \end{bmatrix} \)

ماتریس \(A\) یک ماتریس پادمتقارن نمی‌باشد. زیرا درایه‌های روی قطر اصلی یک ماتریس پادمتقارن باید صفر باشد.

۲. \( B = \begin{bmatrix} 0 & 5 \\ -5 & 0 \end{bmatrix} \)

ماتریس \(B\) یک ماتریس پادمتقارن را نمایش می‌دهد. زیرا علاوه بر این که درایه‌های بر روی قطر اصلی صفر می‌باشند، شرط ماتریس پادمتقارن نیز برقرار خواهد شد.


مثال ۲. فرض کنید که ماتریس زیر یک ماتریس پادمتقارن باشد. در اینصورت \(xy\) را محاسبه کنید.

\( A = \begin{bmatrix} x^2+x & -x & 0 \\ 0 & 0 & y \\ 0 & \sqrt{5} & 0 \end{bmatrix} \)

چون ماتریس A پادمتقارن می‌باشد، طبق رابطه بین درایه‌های یک ماتریس پادمتقارن داریم:

\( \forall 1 \leq i , j \leq n,     a_{ij} = -a_{ji} \)       (*)

 ⇒   \( -x = 0,     y = - \sqrt{5} \)

حال چون درایه‌های روی قطر اصلی هم باید صفر باشد، داریم:

\( x^2+x = 0  \longrightarrow  x(x+1) = 0  \longrightarrow   x = 0 \)   یا   \( x = -1 \)

اما چون باید ویژگی (*) بین درایه‌های برقرار باشد، لذا  \( x = -1 \) را نمی‌توان در نظر گرفت، پس \(xy=0\) خواهد داشت.


تمرین ۱. مقادیر \( xyz \) را در ماتریس‌های پاد متقارن زیر بدست آورید.

۱. \( A = \begin{bmatrix} x^2 & -1 & 0 \\ 1 & y+1 & z \\ 0 & x & 2z \end{bmatrix} \)

۲. \( B = \begin{bmatrix} 0 & 1 & 2 \\ x+y & 0 & 2 \\ z & 2x+2y & 0 \end{bmatrix} \)

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل چهارم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل چهارم بازدید (563)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...
دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش بازدید (593)
مقدمه و فهرست مطالب به همراه دو فصل اول ...
آمادگی برای امتحان ریاضی عمومی - انتگرال دوگانه و سه گانه آمادگی برای امتحان ریاضی عمومی - انتگرال دوگانه و سه گانه بازدید (791)
مسائل حل شده در مبحث انتگرال دوگانه و سه...
جزوه کامل فضاهای متریک استاد برزور جزوه کامل فضاهای متریک استاد برزور بازدید (863)
جزوه کامل فضاهای متریک استاد برزور ...
حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل سوم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل سوم بازدید (1000)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...

فایل های تصادفی

پاسخ تشریحی پایانترم ریاضی عمومی یک صنعتی شریف 13951030 پاسخ تشریحی پایانترم ریاضی عمومی یک صنعت... بازدید (11988)
پاسخ تشریحی آزمون پایانترم ریاضی عمومی ی...
پاسخ تشریحی میانترم محاسبات عددی صنعتی شریف آذر 1395 پاسخ تشریحی میانترم محاسبات عددی صنعتی ش... بازدید (9948)
پاسخ تشریحی آزمون میان ترم محاسبات عددی ...
کلید ریاضیات و کاربرد آن در مدیریت 2، ریاضیات و کاربرد آن در مدیریت - ریاضیات پایه و مقدمات آمار 2- ریاضیات در برنامه ریزی نیم سال اول 90-91 کلید ریاضیات و کاربرد آن در مدیریت 2، ری... بازدید (12291)
نام درس: ریاضیات و کاربرد آن در مدیریت 2...
آمار و احتمال 1 رشته آمار پیام نور آمار و احتمال 1 رشته آمار پیام نور... بازدید (14436)
کتاب آمار و احتمال 1 پیام نور رشته آمار،...
A comparison between the variational iteration method and Adomian decomposition method A comparison between the variational ite... بازدید (15897)
Abdol-Majid Wazwaz A comparison between...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41540)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (28317)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (27479)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (25740)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (25337)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

امنیت در پرداخت ها با

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا