ماتریس پوچ توان

مقطع تحصیلی: عمومی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

تعریف ماتریس پوچ توان: فرض کنید ‎A‌‏ یک ماتریس ‌‎\(n\times n ‌‌‌‎\)‌‎ ‏باشد. ماتریس ‎A‌‏ را پوچ توان گویند، هرگاه عبارت زیر برقرار باشد:

\(\exists k\in \mathbb{N}, A^k=0 , A^{k-1} \neq 0\)

عبارت ریاضی بالا بیان می‌کند که k کوچکترین عدد طبیعی است که به ازای آن ماتریس A به توان آن عدد مساوی ماتریس صفر خواهد شد. در اینصورت ماتریس A را پوچ توان از مرتبه k گویند.


تذکر ۱. دقت کنید در صورتی که ماتریس ‎A‌‏ پوچ توان باشد، همواره اندیس ماتریس پوچ توان کمتر از تعداد سطرها یا ستون‌های ماتریس خواهد بود. یعنی برای ماتریس \(n\times n\) که از مرتبه k پوچ توان است، داریم: ‎\(‎ k‎ ‎\leq n ‌‌‎\)‌‌‌‏.


مثال ۱. آیا ماتریس‌های زیر ماتریسی پوچ توان است؟

۱. \(A=\begin{bmatrix}0 & 2 \\ 0 & 0 \end{bmatrix}\)

با توحه به تعریف ماتریس پوچ توان، کافی است که ماتریس A را در خودش آنقدر ضرب کنیم که برای اولین بار، نتیجه این حاصلضرب‌ها صفر شود. برای این منظور به صورت زیر عمل می‌کنیم:

\(A*A= \begin{bmatrix} 0 &2\\ 0&0 \end{bmatrix} \begin{bmatrix}0&2 \\0 & 0 \end{bmatrix}= \begin{bmatrix}0&0\\0&0\end{bmatrix}\)

در نتیجه این ماتریس، ماتریس پوچ توان از مرتبه ۲ خواهد شد.

۲. \(A=\begin{bmatrix} 0 & 0&2\\0&0&3\\0&0&0\\ \end{bmatrix}\)

برای اینکه نشان دهیم این ماتریس، ماتریسی پوچ توان است یا خیر. کافی است به گونه‌ای که برای ماتریس بالا اقدام نمودیم عمل کنیم. حال ماتریس A را در خودش ضرب کنید:

\(A*A=\begin{bmatrix} 0&0&3\\ 0&0&2\\ 0&0&0 \\ \end{bmatrix} \begin{bmatrix}0&0&3\\0&0&2\\0&0&0\\ \end{bmatrix} = \begin{bmatrix}0 &0&0 \\ 0&0&0 \\0&0&0\\ \end{bmatrix}\)

در نتیجه این ماتریس هم پوچ توان از مرتبه 2 خواهد شد.


تمرین ۱. کدامیک از ماتریسهای زیر پوچ توان است. 

۱. \(A=\begin{bmatrix}5&-3&2\\15&-9&6\\10&-6&4\\ \end{bmatrix}\)

۲. \(A=\begin{bmatrix}0&-3&2\\0&0&6\\0&0&4\\ \end{bmatrix}\)

۳. \(A=\begin{bmatrix}0&0&0&0\\1&0&0&0\\5&3&0&0\\8&6&5&0\\ \end{bmatrix}\)

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

حل تمرین های کتاب کار ریاضی هفتم خیلی سبز  فصل  هشتم حل تمرین های کتاب کار ریاضی هفتم خیلی سبز فصل هشتم بازدید (2)
حل تمرین های کتاب کار ریاضی هفتم خیلی سب...
حل تمرین های کتاب کار ریاضی هشتم خیلی سبز فصل هشتم حل تمرین های کتاب کار ریاضی هشتم خیلی سبز فصل هشتم بازدید (79)
حل تمرین های فصل هشتم کتاب کار ریاضی پای...
آمادگی برای امتحان ریاضی عمومی- دنباله ها و سری های عددی آمادگی برای امتحان ریاضی عمومی- دنباله ها و سری های عددی بازدید (576)
آمادگی برای امتحان ریاضی عمومی- دنباله ه...
آمادگی برای امتحان ریاضی عمومی- انتگرالگیری ناسره آمادگی برای امتحان ریاضی عمومی- انتگرالگیری ناسره بازدید (602)
سوالات حل شده برای آمادگی امتحان ریاضی ع...
حل تمرین های کتاب ریاضی هشتم خیلی سبز  فصل هفتم حل تمرین های کتاب ریاضی هشتم خیلی سبز فصل هفتم بازدید (1149)
حل تمرین های کتاب ریاضی هشتم خیلی سبز ف...

فایل های تصادفی

آمادگی برای امتحان ریاضی عمومی یک - اعداد مختلط آمادگی برای امتحان ریاضی عمومی یک - اعدا... بازدید (1589)
این مجموعه شامل 25 سوال حل شده از بخش اع...
پاسخ تشریحی پایانترم معادلات دیفرانسیل امیرکبیر 13931102 پاسخ تشریحی پایانترم معادلات دیفرانسیل ا... بازدید (8620)
پاسخ تشریحی پایانترم معادلات دیفرانسیل ا...
پاسخ تشریحی پایانترم ریاضی عمومی یک صنعتی شریف 13921019 پاسخ تشریحی پایانترم ریاضی عمومی یک صنعت... بازدید (6126)
پاسخ تشریحی پایانترم ریاضی عمومی یک صنعت...
پاسخنامه آزمون میانترم معادلات دیفرانسیل دانشگاه شاهرود 13930130 پاسخنامه آزمون میانترم معادلات دیفرانسیل... بازدید (5514)
پاسخ آزمون میانترم معادلات دیفرانسیل دان...
پاسخ تشریحی پایانترم ریاضی عمومی 2 صنعتی شریف مورخ 13930322 پاسخ تشریحی پایانترم ریاضی عمومی 2 صنعتی... بازدید (3726)
پاسخ تشریحی نمونه سوال پایانترم ریاضی عم...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (29775)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (22619)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (21645)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (19883)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (19564)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

آمار سایت

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا