معکوس تابع

مقطع تحصیلی: عمومی

رای دهی: 0 / 5

غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

با توجه به این که هر تابع خود نیز یک رابطه است‏، تعریف زیر را نیز برای معکوس یک تابع می‌توان بیان نمود:

معکوس تابع : ‏تابع  ‎f‎  که از مجموعه ‎‏‎ ‎A‎ ‎(دامنه تابع) به مجموعه ‎‎ B‎‎ (برد تابع) به صورت زیر بیان شده است‎‏‏، را در نظر بگیرید.

\(f: A\rightarrow B\)

\(f =‎\{‎‎‎‏‎(a , b) ‎\subset‎ ‎A\times B | a\in A , b\in B \}‎\)‎‎‎‎

در اینصورت معکوس تابع  ‎f‎، رابطه‌ای چون‎g‎ ‎  است که به شکل زیر خواهد بود:

\( f: B\rightarrow A\)

‎‎‎‎\(‎g‎=‎\{‎‎‎‏‎(b , a) ‎\subset‎ B\times A |‎(a , b)\in ‎f‎ \}‎\)

معکوس‏ تابع f را نیز با نماد f-1‎‏ ‎نشان‎ می‌دهیم.


در واقع تعریف بالا بیان می‌کند، تابع معکوس را می‌توان با جابه‌جا کردن مکان مولفه‌های تمام زوج‌های مرتبی که در مجموعه f موجود می‌باشند به دست آورد.

‎‏مثال ۱. معکوس توابع زیر را به دست آورید.‎

  1. \(f ‎=\{(1 , 5) , (2 , 6), (3 , 4)\}‎\)‎‎

معکوس تابع ‎f‎‎‏ به صورت زیر بدست خواهد آمد:

\(‎f^{-1}‎‎ ‎=\{(5 , 1) , (2 , 6), (4 , 3) \}‎\)

با توجه به شکل زیر می‌توان مشاهده کرد که برای به دست آوردن معکوس تابع f کافی است جای مولفه های هر زوج مرتب در مجموعه f را عوض کنید.

در قسمت اول این مثال مشاهده می‌کنید که معکوس تابع f ، خود نیز یک تابع است. 

  1. ‎‎‎\(‎g‎ ‎=\{(1 ,‎a‎) , (2 , a), (3 , 4)\}‎\)

داریم:

‎‎\(‎‎g‎^{-1}‎‎ ‎=\{(a , 1) , (a , 2), (3 , 4)\}‎\)‎‎

قسمت دوم ‏مثال بالا نشان می‌دهد که معکوس تابع g تنها یک رابطه است و تابع نمی‌باشد، زیرا پیکان مربوط به عنصر a در 1-g به دو عضو ۱ و ۲ متصل شده است و این موضوع در تناقض با مفهوم تابع بودن می‌باشد. ‏اکنون سوالی که در اینجا مطرح می‌گردد این است که در چه شرایطی معکوس یک تابع، خود نیز یک تابع است؟ ‏برای پاسخ به این سوال می‌توانید به مفهوم یک به یک بودن رجوع نمایید.

نکته ۱. با توجه به مثال بالا می‌توان بیان نمود که معکوس یک تابع لزوماً تابع نیست.

تمرین ۱. معکوس توابع زیر را به دست آورید و با رسم شکل نشان دهید معکوس کدامیک تابع و معکوس کدامیک تنها یک رابطه است.

  1. \(f = \{(1 , 1) , (5 , a) , (6 , 3) , (c , d) \}\)
  2. \(g =\{( 6 , 3), (a  , a) , (10 , 1) , (11 , 1) , (12 , a) \}\)
  3. \(h = \{(xx , x) , (xxx , x) , (x , x) \}\)

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

حل تمرین های فصل ششم کتاب کار ریاضی هشتم خیلی سبز حل تمرین های فصل ششم کتاب کار ریاضی هشتم خیلی سبز بازدید (56)
حل تمرین های فصل ششم کتاب کار ریاضی هشتم...
جزوه سیستم‌های دینامیکی استاد رزوان دانشگاه صنعتی شریف پاییز ۹۷ جزوه سیستم‌های دینامیکی استاد رزوان دانشگاه صنعتی شریف پاییز ۹۷ بازدید (40)
جزوه سیستم‌های دینامیکی استاد رزوان دانش...
حل تمرین ریاضی عمومی ۲ دکتر کرایه چیان فصل اول حل تمرین ریاضی عمومی ۲ دکتر کرایه چیان فصل اول بازدید (192)
حل المسائل کتاب ریاضی عمومی ۲ دکتر محمدع...
جزوه توپولوژی دانشگاه صنعتی شریف دکتر فنایی بهار 1397 جزوه توپولوژی دانشگاه صنعتی شریف دکتر فنایی بهار 1397 بازدید (260)
جزوه توپولوژی دانشگاه صنعتی شریف دکتر فن...
جزوه بهینه سازی محدب دانشگاه صنعتی شریف دکتر علشاهی بهار 1397 جزوه بهینه سازی محدب دانشگاه صنعتی شریف دکتر علشاهی بهار 1397 بازدید (359)
جزوه بهینه سازی محدب دانشگاه صنعتی شریف ...

فایل های تصادفی

آمادگی برای امتحان ریاضی عمومی یک - مشتق و کاربردهای آن آمادگی برای امتحان ریاضی عمومی یک - مشتق... بازدید (586)
آمادگی برای امتحان ریاضی عمومی یک - مشتق...
حل تمرین های فصل ششم کتاب کار ریاضی هشتم خیلی سبز حل تمرین های فصل ششم کتاب کار ریاضی هشتم... بازدید (56)
حل تمرین های فصل ششم کتاب کار ریاضی هشتم...
جزوه جبرخطی عددی دکتر کامرانیان دانشگاه صنعتی امیرکبیر 95-1394 جزوه جبرخطی عددی دکتر کامرانیان دانشگاه ... بازدید (9620)
فایل pdf اسکن شده جزوه دست نویس درس جبرخ...
آنالیز عددی 1 پیام نور دکتر بابلیان آنالیز عددی 1 پیام نور دکتر بابلیان... بازدید (13118)
کتاب آنالیز عددی 1 پیام نور نوشته دکتر ا...
مقدمه کتاب هندسه جبری میلز رید مقدمه کتاب هندسه جبری میلز رید... بازدید (8569)
ترجمه رحیم زارع نهندی ، مرکز نشر دانشگاه...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (26636)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (20838)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (19873)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (18142)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (17696)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

آمار سایت

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا