معکوس تابع

مقطع تحصیلی: عمومی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

با توجه به این که هر تابع خود نیز یک رابطه است‏، تعریف زیر را نیز برای معکوس یک تابع می‌توان بیان نمود:

معکوس تابع : ‏تابع  ‎f‎  که از مجموعه ‎‏‎ ‎A‎ ‎(دامنه تابع) به مجموعه ‎‎ B‎‎ (برد تابع) به صورت زیر بیان شده است‎‏‏، را در نظر بگیرید.

\(f: A\rightarrow B\)

\(f =‎\{‎‎‎‏‎(a , b) ‎\subset‎ ‎A\times B | a\in A , b\in B \}‎\)‎‎‎‎

در اینصورت معکوس تابع  ‎f‎، رابطه‌ای چون‎g‎ ‎  است که به شکل زیر خواهد بود:

\( f: B\rightarrow A\)

‎‎‎‎\(‎g‎=‎\{‎‎‎‏‎(b , a) ‎\subset‎ B\times A |‎(a , b)\in ‎f‎ \}‎\)

معکوس‏ تابع f را نیز با نماد f-1‎‏ ‎نشان‎ می‌دهیم.


در واقع تعریف بالا بیان می‌کند، تابع معکوس را می‌توان با جابه‌جا کردن مکان مولفه‌های تمام زوج‌های مرتبی که در مجموعه f موجود می‌باشند به دست آورد.

‎‏مثال ۱. معکوس توابع زیر را به دست آورید.‎

  1. \(f ‎=\{(1 , 5) , (2 , 6), (3 , 4)\}‎\)‎‎

معکوس تابع ‎f‎‎‏ به صورت زیر بدست خواهد آمد:

\(‎f^{-1}‎‎ ‎=\{(5 , 1) , (2 , 6), (4 , 3) \}‎\)

با توجه به شکل زیر می‌توان مشاهده کرد که برای به دست آوردن معکوس تابع f کافی است جای مولفه های هر زوج مرتب در مجموعه f را عوض کنید.

در قسمت اول این مثال مشاهده می‌کنید که معکوس تابع f ، خود نیز یک تابع است. 

  1. ‎‎‎\(‎g‎ ‎=\{(1 ,‎a‎) , (2 , a), (3 , 4)\}‎\)

داریم:

‎‎\(‎‎g‎^{-1}‎‎ ‎=\{(a , 1) , (a , 2), (3 , 4)\}‎\)‎‎

قسمت دوم ‏مثال بالا نشان می‌دهد که معکوس تابع g تنها یک رابطه است و تابع نمی‌باشد، زیرا پیکان مربوط به عنصر a در 1-g به دو عضو ۱ و ۲ متصل شده است و این موضوع در تناقض با مفهوم تابع بودن می‌باشد. ‏اکنون سوالی که در اینجا مطرح می‌گردد این است که در چه شرایطی معکوس یک تابع، خود نیز یک تابع است؟ ‏برای پاسخ به این سوال می‌توانید به مفهوم یک به یک بودن رجوع نمایید.

نکته ۱. با توجه به مثال بالا می‌توان بیان نمود که معکوس یک تابع لزوماً تابع نیست.

تمرین ۱. معکوس توابع زیر را به دست آورید و با رسم شکل نشان دهید معکوس کدامیک تابع و معکوس کدامیک تنها یک رابطه است.

  1. \(f = \{(1 , 1) , (5 , a) , (6 , 3) , (c , d) \}\)
  2. \(g =\{( 6 , 3), (a  , a) , (10 , 1) , (11 , 1) , (12 , a) \}\)
  3. \(h = \{(xx , x) , (xxx , x) , (x , x) \}\)

نظر خود را اضافه کنید.

ارسال نظر به عنوان مهمان

0
نظر شما به دست مدیر خواهد رسید
  • هیچ نظری یافت نشد

جدیدترین محصولات

حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل ششم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل ششم بازدید (3)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...
حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل پنجم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل پنجم بازدید (73)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...
حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل چهارم حل تمرین های کتاب کارپوچینو ریاضی هشتم فصل چهارم بازدید (1225)
حل تمرین های کتاب کارپوچینو ریاضی هشتم ف...
دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش دو فصل اول کتاب خودآموز سریع متلب (MATLAB) استاد مس فروش بازدید (1163)
مقدمه و فهرست مطالب به همراه دو فصل اول ...
آمادگی برای امتحان ریاضی عمومی - انتگرال دوگانه و سه گانه آمادگی برای امتحان ریاضی عمومی - انتگرال دوگانه و سه گانه بازدید (1415)
مسائل حل شده در مبحث انتگرال دوگانه و سه...

فایل های تصادفی

A gravitational interior point method for LP A gravitational interior point method fo... بازدید (13971)
Katta G. Murty ، In [4, 1] gravitational...
جزوه آنالیز تابعی مقدماتی دکتر صال مصلحیان دانشگاه فردوسی مشهد 1396 جزوه آنالیز تابعی مقدماتی دکتر صال مصلحی... بازدید (6315)
جزوه آنالیز تابعی مقدماتی دکتر صال مصلحی...
پاسخ تشریحی میانترم آنالیز ریاضی 1 دانشگاه شاهرود استاد موسوی 13910212 پاسخ تشریحی میانترم آنالیز ریاضی 1 دانشگ... بازدید (9067)
پاسخ تشریحی میانترم آنالیز ریاضی 1 دانشگ...
جزوه آنالیز حقیقی دکتر حاتم دانشگاه صنعتی امیرکبیر ترم اول 97-1396 جزوه آنالیز حقیقی دکتر حاتم دانشگاه صنعت... بازدید (8584)
جزوه آنالیز حقیقی دانشگاه صنعتی امیرکبیر...
جزوه مبانی ریاضیات دکتر صال مصلحیان فردوسی مشهد جزوه مبانی ریاضیات دکتر صال مصلحیان فردو... بازدید (12886)
جزوه مبانی ریاضیات دکتر صال مصلحیان دانش...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (43352)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (29167)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (28365)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (26658)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (26257)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
  • تهران و کرج
  • 09190-24816-0
  • این ایمیل آدرس توسط سیستم ضد اسپم محافظت شده است. شما میباید جاوا اسکریپت خود را فعال نمایید

امنیت در پرداخت ها با

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا