چگونه سری مک‌لورن تابع e^x را محاسبه کنیم؟

چاپ
مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 
ریاضی   سری مک‌لورن  

چگونه سری مک‌لورن تابع \( e^x \) را محاسبه کنیم؟

محاسبه سری مک‌لورن تابع \( e^x \) به سادگی از طریق تعریف انجام می‌شود. ببینید:


روش محاسبه سری مک‌لورن تابع \( e^x \) :

مانند مثال‌های قبل برای محاسبه سری مک‌لورن تابع نمایی \( f(x) = e^x \) ،ابتدا مقدار تابع را در نقطه \( x=0 \) به دست می‌آوریم. سپس مشتق تابع را گرفته و مقدار مشتق را در نقطه \( x=0 \) محاسبه می‌کنیم. پس از آن به ترتیب مشتق مرتبه دوم و سوم و ... را در نقطه \( x=0 \) محاسبه می کنیم. سپس مقادیر به دست آمده را در فرمول سری مک‌لورن جایگذاری کرده و بسط سری مک‌لورن تابع \( f(x) = e^x \) به دست خواهد آمد.

\( f(x) = e^x \Longrightarrow f (0) = e^0 = 1 \)

\( f(x) = e^x \Longrightarrow f^{\prime} (x) = e^x  \Longrightarrow f^{\prime} (0) = e^0 = 1 \)

\( f^{\prime}(x) = e^x \Longrightarrow f^{\prime\prime} (x) = e^x  \Longrightarrow f^{\prime\prime} (0) = e^0 = 1 \)

\( f^{\prime\prime}(x) = e^x \Longrightarrow f^{(3)} (x) =  e^x \Longrightarrow f^{(3)} (0) =  e^0 = 1 \)

\( f^{(3)}(x) = e^x \Longrightarrow f^{(4)} (x) =  e^x \Longrightarrow f^{(4)} (0) =  e^0 = 1 \)

و به همین ترتیب، چون مشتق تابع نمایی با خودش برابر است، لذا مشتق مراتب بالاتر در نقطه \( x = 0 \)  همگی برابر با \( 1 \) خواهد شد:

\(  f^{(5)} (0) = 1  , f^{(6)} (0) = 1  , f^{(7)} (0) = 1  , f^{(8)} (0) = 1  , f^{(9)} (0) = 1  , \cdots  \)

بنابراین سری مک‌لورن تابع \( e^x \) با جایگذاری مقادیر فوق در فرمول، به صورت زیر خواهد بود:

\( \begin{align*}  \sum_{n=0}^{\infty} f^{(n)} (0) \frac{x^{n}}{n!} &= f(0) + f^{\prime} (0) x + f^{\prime\prime} (0) \frac{x^{2}}{2!}  + f^{(3)} (0) \frac{x^{3}}{3!} + \cdots \\  &= 1 +  1 \times x + 1 \times \frac{x^{2}}{2!}  + 1 \times \frac{x^{3}}{3!} + 1 \times \frac{x^{4}}{4!} + 1 \times \frac{x^{5}}{5!} \\ & \qquad +1 \times \frac{x^{6}}{6!} + 1 \times \frac{x^{7}}{7!} + 1 \times \frac{x^{8}}{8!} + 1 \times \frac{x^{9}}{9!} + \cdots  \\ & = 1 +x + \frac{x^{2}}{2!} +  \frac{x^{3}}{3!} + \frac{x^{4}}{4!} +\frac{x^{5}}{5!} +\cdots  \end{align*} \)

بنابراین چندجمله‌ای سری مک‌لورن تابع \( f(x) = e^x \) به صورت زیر می‌باشد:

\( \boxed{ e^x = 1 +x + \frac{x^{2}}{2!} +  \frac{x^{3}}{3!} + \frac{x^{4}}{4!} +\frac{x^{5}}{5!} +\cdots } \)