زيرحلقه

چاپ
مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

تعریف زیر‎ حلقه: فرض کنید که R‌‌‎ همراه با دو عمل دوتایی + و . تشکیل یک حلقه بدهد. مجموعه \(\emptyset \neq S \subset R\) را در نظر بگیرید. مجموعه S را همراه با دو عمل دوتایی + و . تعریف شده بر روی مجموعه R، زیر حلقهای از حلقه R گویند، هرگاه این مجموعه همراه با دو عمل دوتایی حلقه R خود تشکیل یک حلقه بدهد. در واقع مجموعه S همراه با دو عمل دوتایی بر روی مجموعه R کافی است، در شرایط زیر صدق کند:

۱. مجموعه S نسبت به عمل دوتایی + یک گروه جا‌به‌جایی باشد.

۲. مجموعه S نسبت به عمل دوتایی . یک نیمگروه باشد.

۳. بر روی مجموعه S،  عمل دوتایی ضرب بر روی عمل دوتایی جمع پخشپذیر است.

زیرحلقه بودن را با نماد \(S\leq R\) نشان می‌دهند.


مثال ۱. حلقه \((\mathbb{Q} , + , .)\) را در نظر بگیرید. نشان دهید که \((\mathbb{Z} , + , .)\) زیرحلقه‌ای از این مجموعه می‌باشد.

با توجه به تعریف زیرحلقه داریم:

۱. \((\mathbb{Z} , + , .)\) تشکیل یک گروه آبلی می‌دهد، زیرا داریم:

\(a+0=0+a=a\)

\( a+(-a) = (-a)+a=0\)

۲. \((\mathbb{Z} , .)\) تشکیل یک نیمگروه را می‌دهد. زیرا

۳. عمل دوتایی . نسبت به عمل دوتایی + بر روی مجموعه  \(\mathbb{Z}\) شرکتپذیر می‌باشد. یعنی داریم:

\( \forall a,b,c \in \mathbb{Z} ; a.(b+c) = a.b + a.c = (b+c).a \)

در نتیجه با بررسی سه شرط برای زیرحلقه بودن، نتیجه می‌گیریم که \((\mathbb{Z} , + , .)\) زیرحلقه‌ای از \((\mathbb{Q} , + , .)\) می‌باشد.


قضیه۱. فرض کنید که \( A \neq \emptyset \) زیرمجموعه‌ای از حلقه R باشد. در اینصورت A یک زیرحلقه R است اگر و فقط اگر داشته باشیم:

۱. به ازای هر \( a,b \in A \) می‌گیریم،  \( a-b \in A \) باشد.

۲. به ازای هر \(a,b \in A \) مي‌گيريم، \( ab \in A \) باشد.

برهان: برای اثبات این قضیه اینگونه عمل می‌کنیم. ابتدا فرض کنید که A یک زیرحلقه R باشد. با توجه به زیرحلقه بودن A داريم، كه اين مجموعه نسبت به عمل دوتایی جمع و ضرب بسته است، يعني به ازای هر \( a,b \in A \) می‌گیریم داریم \( ab \in A , a+b \in A \) است. همچنین با توجه به زیرحلقه بودن، هر عضو نسبت به عمل جمع دارای وارون جمعی است. لذا اگر \( a \in A \) باشد در نتیجه \( -a \in A \) خواهد بود و این موضوع نتیجه می‌دهد که \( a-b \in A \) خواهد بود. برای اثبات در جهت عکس کافی است، فرض کنید که دو شرط ۱ و ۲ برقرار باشد. لذا نشان مي‌دهیم که زیرمجموعه A از R با این دو شرط تشکیل یک حلقه می‌دهد. پس باید ثابت کنیم که A نسبت به عمل دوتایی جمع یک گروه آبلی است. لذا به ازای هر \( a \in A \) می‌گیریم با توجه به ویژگی ۱ داریم، \( a-a =0 \in A \) خواهد بود. در نتیجه عضو همانی در A موجود است. با توجه به اینکه \( 0\in A \) است، پس به ازای هر \(b \in A\) داریم، \( 0-b = -b \in A \) است. در نتیجه هر عضو مجموعه A دارای وارونی در مجموعه A است. برای بررسی دو ویژگی دیگر گروه آبلی بودن داریم، چون این دو ویژگی بر روی R برقرار است بر روی A هم برقرار خواهد شد. این موضوع را به عنوان یک تمرین بررسی کنید.


تمرین ۱. آیا \( (2Z , + , . ) \leq (Z , + , . ) \) یک زیرحلقه است؟


تمرین ۲. آیا مجموعه \( A_{n \times n} = [F] = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a,b,c,d \in F , ad - bc \neq 0 \} \) زیرحلقه‌ای از \( M_{n \times n} (F) \) می‌باشد؟


تمرین ۳. فرض کنید که A مجموعه تمام توابع حقيقي و B مجموعه تمام توابع دوسويي باشند. ثابت كنيد كه مجموعه B همراه با دو عمل دوتایی تعريف شده به صورت زير يك زيرحلقه از مجموعه A مي‌باشد؟

\( (f+g) (x) = f(x) + g(x) \)

\(f.g(x) = fog(x)\)

که در آن o نماد ترکیب توابع است.