سری تیلور

چاپ
مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 
ریاضی   دنباله و سری   سری تیلور  

سری تیلور چیست؟

سری تیلور یک چندجمله‌ای از درجه نامتناهی است و برای نمایش توابع مختلفی که خودشان چندجمله‌ای نیستند، استفاده می‌شود.

تعریف سری تیلور :

فرض کنید \( f(x) \) یک تابع حقیقی است که در نقطه \( x = a \)‌ بی‌نهایت بار مشتق پذیر می‌باشد. سری تیلور تابع \( f(x) \)  را در نقطه‌ی \( x = a \) به صورت زیر ارائه می‌دهد:

\( \sum_{n=0}^{\infty} f^{(n)} (a) \frac{(x-a)^{n}}{n!} = f(a) + f^{\prime} (a) (x-a) + f^{\prime\prime} (a) \frac{(x-a)^{2}}{2!} + f^{(3)} (a) \frac{(x-a)^{3}}{3!} + \cdots\)

که به آن سری تیلور تابع \( f(x) \)‌ در نقطه \( a \)‌ می‌گوییم.

توجه داشته باشید که در فرمول بالا، \( f^{(n)} (a) \) به معنی مشتق  \( n \)‌م تابع \( f(x) \)  در نقطه‌ی \( x = a \) است.

روش محاسبه سری تیلور:

برای محاسبه سری تیلور یک تابع در نقطه داده شده، ابتدا مشتق تابع را گرفته و مقدار مشتق را در آن نقطه محاسبه می‌کنیم. سپس به ترتیب مشتق مرتبه دوم و سوم و ... را در نقطه داده شده محاسبه می کنیم. سپس مقادیر به دست آمده را در فرمول بالا جایگذاری کرده و بسط تیلور تابع به دست خواهد آمد.

اکنون با یک مثال به خوبی روش کار را ببینیم.

مثال: بسط تیلور تابع \( \cos x \) را حول نقطه \( x= \pi \)‌ به دست آورید.

حل: در این مثال \( f(x) = \cos x \) و \( a = \pi \) . ابتدا مقدار تابع در این نقطه را محاسبه می کنیم و سپس مشتقات تابع را در این نقطه حساب می‌کنیم.

\( f(x) = \cos x \Longrightarrow f (\pi) = \cos (\pi) = -1 \)

\( f(x) = \cos x \Longrightarrow f^{\prime} (x) = - \sin (x)  \Longrightarrow f^{\prime} (\pi) = - \sin (\pi) = 0 \)

\( f^{\prime}(x) = - \sin (x) \Longrightarrow f^{\prime\prime} (x) = - \cos (x)  \Longrightarrow f^{\prime\prime} (\pi) = - \cos (\pi) = - (-1) = 1 \)

\( f^{\prime\prime}(x) = - \cos (x) \Longrightarrow f^{(3)} (x) =  \sin (x)  \Longrightarrow f^{(3)} (\pi) =  \sin (\pi) = 0 \)

\( f^{(3)}(x) = \sin (x) \Longrightarrow f^{(4)} (x) =  \cos (x)  \Longrightarrow f^{(4)} (\pi) =  \cos (\pi) = -1 \)

و به همین ترتیب مشتق مراتب بالاتر در نقطه \( \pi \)  به صورت زیر تکرار خواهد شد:

\(  f^{(5)} (\pi) = 0  , f^{(6)} (\pi) = 1  , f^{(7)} (\pi) = 0  , f^{(8)} (\pi) = -1  , f^{(9)} (\pi) = 0  , \cdots  \)

بنابراین سری تیلور تابع \( \cos x \) در نقطه \( x= \pi \)‌ با جایگذاری مقادیر فوق در فرمول، به صورت زیر خواهد بود:

\( \begin{align*}  \sum_{n=0}^{\infty} f^{(n)} (\pi) \frac{(x-\pi)^{n}}{n!} &= f(\pi) + f^{\prime} (\pi) (x-\pi) + f^{\prime\prime} (\pi) \frac{(x-\pi)^{2}}{2!}  + f^{(3)} (\pi) \frac{(x-\pi)^{3}}{3!} + \cdots \\  &= -1 +  (0) (x-\pi) + 1\times \frac{(x-\pi)^{2}}{2!}  + 0 \times \frac{(x-\pi)^{3}}{3!} - 1 \times \frac{(x-\pi)^{4}}{4!} + 0 \times \frac{(x-\pi)^{5}}{5!} \\ & \qquad + 1 \times \frac{(x-\pi)^{6}}{6!} + 0 \times \frac{(x-\pi)^{7}}{7!} - 1 \times \frac{(x-\pi)^{8}}{8!} + 0 \times \frac{(x-\pi)^{9}}{9!} + \cdots  \\ & = -1 +\frac{(x-\pi)^{2}}{2!} -  \frac{(x-\pi)^{4}}{4!} + \frac{(x-\pi)^{6}}{6!} -\frac{(x-\pi)^{8}}{8!} + \cdots \\ & = -1 +\frac{1}{2!} (x-\pi)^{2} -  \frac{1}{4!} (x-\pi)^{4}+ \frac{1}{6!} (x-\pi)^{6} -\frac{1}{8!} (x-\pi)^{8} + \cdots \end{align*} \)

این چندجمله‌ای سری تیلور تابع \( \cos x \) حول نقطه \( x= \pi \)‌ می‌باشد. هرچه تعداد مراتب مشتق را بیشتر کنیم، دقت تخمین سری بیشتر خواهد شد و منحنی چندجمله‌ای بر منحنی تابع منطبق‌تر خواهد شد.

در شکل زیر شما نمودار سری‌های تیلور برای تابع \( \cos x \) در نقطه \( x= 0 \)‌ نمایش داده شده است. هرچه تعداد جملات بیشتری را انتخاب کنیم، تطابق دو منحنی بر هم بیشتر خواهد شد.

نمودار سری تیلور تابع کسینوس حول نقطه x=0 در سایت ریاضیات ایران

 حالا شما سری تیلور تابع \( \cos x \) در نقطه \( x= 0 \)‌ را محاسبه کنید و با شکل بالا آن را مقایسه کنید.

تمرین ۱: سری تیلور تابع \( f(x) = e^{x} \) در نقطه \( x= 0 \)‌ بیابید.

تمرین ۲: سری تیلور تابع \( f(x) = \sin x \) در نقطه \( x= 0 \)‌ بیابید.