شما مقطع دانشگاه را انتخاب کرده اید

سری تیلور

سری تیلور چیست؟

سری تیلور یک چندجمله‌ای از درجه نامتناهی است و برای نمایش توابع مختلفی که خودشان چندجمله‌ای نیستند، استفاده می‌شود.

تعریف سری تیلور :

فرض کنید $ f(x) $ یک تابع حقیقی است که در نقطه $ x = a $‌ بی‌نهایت بار مشتق پذیر می‌باشد. سری تیلور تابع $ f(x) $  را در نقطه‌ی $ x = a $ به صورت زیر ارائه می‌دهد:

$ \sum_{n=0}^{\infty} f^{(n)} (a) \frac{(x-a)^{n}}{n!} = f(a) + f^{\prime} (a) (x-a) + f^{\prime\prime} (a) \frac{(x-a)^{2}}{2!} + f^{(3)} (a) \frac{(x-a)^{3}}{3!} + \cdots$

که به آن سری تیلور تابع $ f(x) $‌ در نقطه $ a $‌ می‌گوییم.

توجه داشته باشید که در فرمول بالا، $ f^{(n)} (a) $ به معنی مشتق  $ n $‌م تابع $ f(x) $  در نقطه‌ی $ x = a $ است.

روش محاسبه سری تیلور:

برای محاسبه سری تیلور یک تابع در نقطه داده شده، ابتدا مشتق تابع را گرفته و مقدار مشتق را در آن نقطه محاسبه می‌کنیم. سپس به ترتیب مشتق مرتبه دوم و سوم و ... را در نقطه داده شده محاسبه می کنیم. سپس مقادیر به دست آمده را در فرمول بالا جایگذاری کرده و بسط تیلور تابع به دست خواهد آمد.

اکنون با یک مثال به خوبی روش کار را ببینیم.

مثال: بسط تیلور تابع $ \cos x $ را حول نقطه $ x= \pi $‌ به دست آورید.

حل: در این مثال $ f(x) = \cos x $ و $ a = \pi $ . ابتدا مقدار تابع در این نقطه را محاسبه می کنیم و سپس مشتقات تابع را در این نقطه حساب می‌کنیم.

$ f(x) = \cos x \Longrightarrow f (\pi) = \cos (\pi) = -1 $

$ f(x) = \cos x \Longrightarrow f^{\prime} (x) = - \sin (x)  \Longrightarrow f^{\prime} (\pi) = - \sin (\pi) = 0 $

$ f^{\prime}(x) = - \sin (x) \Longrightarrow f^{\prime\prime} (x) = - \cos (x)  \Longrightarrow f^{\prime\prime} (\pi) = - \cos (\pi) = - (-1) = 1 $

$ f^{\prime\prime}(x) = - \cos (x) \Longrightarrow f^{(3)} (x) =  \sin (x)  \Longrightarrow f^{(3)} (\pi) =  \sin (\pi) = 0 $

$ f^{(3)}(x) = \sin (x) \Longrightarrow f^{(4)} (x) =  \cos (x)  \Longrightarrow f^{(4)} (\pi) =  \cos (\pi) = -1 $

و به همین ترتیب مشتق مراتب بالاتر در نقطه $ \pi $  به صورت زیر تکرار خواهد شد:

$  f^{(5)} (\pi) = 0  , f^{(6)} (\pi) = 1  , f^{(7)} (\pi) = 0  , f^{(8)} (\pi) = -1  , f^{(9)} (\pi) = 0  , \cdots  $

بنابراین سری تیلور تابع $ \cos x $ در نقطه $ x= \pi $‌ با جایگذاری مقادیر فوق در فرمول، به صورت زیر خواهد بود:

$ \begin{align*}  \sum_{n=0}^{\infty} f^{(n)} (\pi) \frac{(x-\pi)^{n}}{n!} &= f(\pi) + f^{\prime} (\pi) (x-\pi) + f^{\prime\prime} (\pi) \frac{(x-\pi)^{2}}{2!}  + f^{(3)} (\pi) \frac{(x-\pi)^{3}}{3!} + \cdots \\  &= -1 +  (0) (x-\pi) + 1\times \frac{(x-\pi)^{2}}{2!}  + 0 \times \frac{(x-\pi)^{3}}{3!} - 1 \times \frac{(x-\pi)^{4}}{4!} + 0 \times \frac{(x-\pi)^{5}}{5!} \\ & \qquad + 1 \times \frac{(x-\pi)^{6}}{6!} + 0 \times \frac{(x-\pi)^{7}}{7!} - 1 \times \frac{(x-\pi)^{8}}{8!} + 0 \times \frac{(x-\pi)^{9}}{9!} + \cdots  \\ & = -1 +\frac{(x-\pi)^{2}}{2!} -  \frac{(x-\pi)^{4}}{4!} + \frac{(x-\pi)^{6}}{6!} -\frac{(x-\pi)^{8}}{8!} + \cdots \\ & = -1 +\frac{1}{2!} (x-\pi)^{2} -  \frac{1}{4!} (x-\pi)^{4}+ \frac{1}{6!} (x-\pi)^{6} -\frac{1}{8!} (x-\pi)^{8} + \cdots \end{align*} $

این چندجمله‌ای سری تیلور تابع $ \cos x $ حول نقطه $ x= \pi $‌ می‌باشد. هرچه تعداد مراتب مشتق را بیشتر کنیم، دقت تخمین سری بیشتر خواهد شد و منحنی چندجمله‌ای بر منحنی تابع منطبق‌تر خواهد شد.

در شکل زیر شما نمودار سری‌های تیلور برای تابع $ \cos x $ در نقطه $ x= 0 $‌ نمایش داده شده است. هرچه تعداد جملات بیشتری را انتخاب کنیم، تطابق دو منحنی بر هم بیشتر خواهد شد.

نمودار سری تیلور تابع کسینوس حول نقطه x=0 در سایت ریاضیات ایران

 حالا شما سری تیلور تابع $ \cos x $ در نقطه $ x= 0 $‌ را محاسبه کنید و با شکل بالا آن را مقایسه کنید.

تمرین ۱: سری تیلور تابع $ f(x) = e^{x} $ در نقطه $ x= 0 $‌ بیابید.

تمرین ۲: سری تیلور تابع $ f(x) = \sin x $ در نقطه $ x= 0 $‌ بیابید.

ریاضی, دنباله و سری, سری تیلور

  • بازدید: 7059

  • کاربران 818
  • مطالب 1059
  • نمایش تعداد مطالب 16192276