ویژگی‌‌های ماتریس‌های هرمیتی و هرمیتی کج

چاپ
مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 
ماتریس  

ویژگی‌‌های ماتریس‌های هرمیتی و هرمیتی کج

 در این مطلب سعی داریم ویژگی‌هایی که بر روی ماتریس‌های هرمیتی و هرمیتی کج را بررسی کنیم. 

ویژگی ۱. اگر A یک ماتریس مربعی از مرتبه \(n \times n\) باشد. در اینصورت عبارات زیر را داریم: 

\(\overline{(A+ \overline{A^t})^t}= \overline{A^t + (\overline{A^t})^t}=\overline{A^t} + \overline{\overline{(A^t)^t}}= \overline{A^t} + \overline{\overline{A}}= \overline{A^t} + A\)

در نتیجه ماتریس A یک ماتریس هرمیتی است. 

\(\overline{(A-\overline{A^t})^t}= \overline{A^t - (\overline{A^t})^t}=\overline{A^t} - \overline{(\overline{A^t})^t}=\overline{A^t} - \overline{\overline{(A^t)^t}}=\overline{A^t} - \overline{\overline{A}}=\overline{A^t} - A=-(A-\overline{A^t})\)


مثال ۱. فرض کنید که A یک  ماتریس مربعی به شکل زیر باشد. نشان دهید که \(A+\overline{A^t}\)  و \(A- \overline{A^t}\) ماتریس هرمیتی و ماتریس هرمیتی کج می‌باشند.

\(A=\begin{bmatrix}1&i\\0&2 \end{bmatrix}\)

برای اینکه نشان دهیم ماتریسهای \(A+\overline{A^t}\) و \(A-\overline{A^t}\) ماتریس هرمیتی و ماتریس هرمیتی کج هستند، اینگونه عمل می‌کنیم:

 \(A^t= \begin{bmatrix} 1&0\\i&2\end{bmatrix}\) ⇒ \(\overline{A^t}=\begin{bmatrix}1&0\\-i&2\end{bmatrix}\) ⇒ \(A+ \overline{A^t}=\begin{bmatrix}1&i\\0&2\end{bmatrix} + \begin{bmatrix} 1&0\\-i&2 \end{bmatrix}=\begin{bmatrix} 2&i\\-i&4\end{bmatrix}=C\)

حال نشان می‌دهیم که \(A+\overline{A^t}\) هرمیتی است. لذا داریم:

\(C^t =\begin{bmatrix}2&-i\\i&4\end{bmatrix}\) ⇒ \(\overline{C^t}=\begin{bmatrix}2&i\\-i&4\end{bmatrix}=C\)

لذا یک ماتریس هرمیتی است. 

حال ماتریس \(A-\overline{A^t}\) را به دست می‌آوریم:

\(A-\overline{A^t}=\begin{bmatrix}1&i\\0&2\end{bmatrix} - \begin{bmatrix}1&0\\-i&2\end{bmatrix}=\begin{bmatrix}2&i\\-i&4\end{bmatrix}=D\)

بررسی می‌کنیم که ماتریس حاصل شده یک ماتریس هرمیتی کج است. پس داریم:

\(D^t=\begin{bmatrix}2&-i\\i&4\end{bmatrix}\) ⇒ \(\overline{D^t}=\begin{bmatrix}2&i\\-i&4\end{bmatrix}=D\)

پس یک ماتریس هرمیتی کج است. 


ویژگی ۲. فرض کنید که A یک ماتریس مربعی از مرتبه \(n \times n\) با درایه‌های مختلط باشد. در اینصورت این ماتریس را می‌توان به شکل مجموع دو ماتریس هرمیتی \(\frac{1}{2}(A + \overline{A^t})\) و ماتریس هرمیتی کج \(\frac{1}{2}(A-\overline{A^t})\) نوشت. 

تمرین ۱. نشان دهید که ماتریسهای زیر را می‌توان برحسب مجموع دو ماتریس به شکل ویژگی ۲ بیان نمود. 

۱. \(A=\begin{bmatrix}1&i&2\\3&i+1&5\\i&3&4\end{bmatrix}\)

۲. \(B=\begin{bmatrix}i&i+1\\2i+1&5i\end{bmatrix}\)


ویژگی ۳. فرض کنید که A یک ماتریس مربعی از مرتبه \(n \times n\) باشد. در اینصورت داریم:

\(\overline{A^t}=A\)

در نتیجه \(\overline{\overline{A}^t}= \overline{A}\). پس \(\overline{A}\) یک ماتریس هرمیتی است. 

\(\overline{A^t}= -A\)

در نتیجه \(\overline{\overline{A}^t}=-\overline{A}\). پس \(\overline{A}\) یک ماتریس هرمیتی کج است .


تمرین ۲. نشان دهید که ماتریسهای \(\overline{A}\)  و \(\overline{B}\) ماتریس‌های هرمیتی و هرمیتی کج است. 

ویژگی ۴. فرض کنید که A یک ماتریس حقیقی و پادمتقارن یا مختلط و هرمیتی کج باشد. آنگاه \(±iA\) یک ماتریس هرمیتی است. 

تمرین ۳. نشان دهید که ویژگی ۴ برقرار است.


 ویژگی ۵. فرض کنید که A یک ماتریس مربعی مختلط از مرتبه \(n\times n\) و هرمیتی باشد. در اینصورت ماتریسهای زیر هرمیتی هستند. 

\(A+\overline{A^t}\)      

 \(A\overline{A^t}\)   

  \(\overline{A^t}A\)


مثال ۲. فرض کنید که A یک ماتریس هرمیتی مختلط به شکل زیر باشد. ویژگی ۵ را بررسی کنید. 

\(A=\begin{bmatrix}i&i+1\\2i&3i\end{bmatrix}\)

ابتدا نشان می‌دهیم که \(\overline{A^t}A\)  یک ماتریس هرمیتی است. برای این موضوع داریم:

\(A^t=\begin{bmatrix}i&2i\\i+1&3i\end{bmatrix}\) ⇒ \(\overline{A^t}= \begin{bmatrix}-i&-2i\\-i+1&-3i\end{bmatrix}\)

⇒ \(\overline{A^t}A=\begin{bmatrix}-i&-2i\\-i+1&-3i\end{bmatrix}\begin{bmatrix}i&i+1\\2i&3i\end{bmatrix}=\begin{bmatrix}1+4&1-i+6\\1+i+6&1+1+9\end{bmatrix}=\begin{bmatrix}5&7-i\\7+i&11\end{bmatrix}=C\)

که C یک ماتریس هرمیتی است. به عنوان تمرین ثابت کنید که \(A\overline{A^t}\) و \(A + \overline{A^t}\) ماتریس‌های هرمیتی هستند.


ویژگی ۶. فرض کنید که A یک ماتریس مربعی از مرتبه \(n \times n\) و هرمیتی باشد. در اینصورت A را می‌توان به شکل منحصر به فردی چون \(B+iC\) نوشت که در آن B یک ماتریس متقارن و C یک ماتریس پادمتقارن حقیقی است. 


مثال ۳. فرض کنید که A یک ماتریس به شکل زیر باشد. نشان دهید ویژگی ۶ برقرار است. 

\(A=\begin{bmatrix}2&i\\-i&3\end{bmatrix} \)⇒ \(A=\begin{bmatrix}2&0\\0&3\end{bmatrix} + i\begin{bmatrix}0&1\\-1&0\end{bmatrix}=B+iC\)

که در آن B یک  ماتریس متقارن و C یک ماتریس پادمتقارن است. 


ویژگی ۷. فرض کنید که A یک ماتریس مربعی از مرتبه \(n\times n\) و هرمیتی کج باشد. در اینصورت می‌توان  ماتریسهای B و C که منحصر به فرد هستند را به گونه‌ای یافت که \(A=B+iC\) باشد، که در آن B ماتریس پادمتقارن و C ماتریس متقارن حقیقی است. 


تمرین ۴. با یک مثال ویژگی ۷ رانشان دهید.