مزدوج ماتریس

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

مزدوج ماتریس: فرض کنید که \(A\) یک ماتریس از مرتبه \( m \times n\) باشد. ماتریسی که از مزدوج کردن تک تک درایه‌های ماتریس \(A\) حاصل می‌شود، را مزدوج ماتریس \(A\) گویند. به عبارت دیگر فرض کنید \(A = [a_{ij}]\) باشد. در اینصورت مزدوج ماتریس \(A\) را با نماد \(\overline{A} = [b_{ij}]_{m \times n}\) نمایش می‌دهند، که رابطه زیر بین درایه‌های \(A\) و  \(\overline{A}\) برقرار می‌باشد:

\(b_{ij} = \overline{a_{ij}}\)


مثال ۱. مزدوج ماتریس‌های زیر را محاسبه کنید.

۱. \(A = \begin{bmatrix} 1 & 5i & i \\ 2 & 0 & i+1 \end{bmatrix} \Longrightarrow \overline{A} = \begin{bmatrix} 1 & -5i & -i \\ 2 & 0 & 1-i \end{bmatrix}\)

۲. \(B = \begin{bmatrix} 5i+3 & 2i+1 \\ 3i+7 & 5i \end{bmatrix} \Longrightarrow \overline{B} = \begin{bmatrix} 3-5i & 1-2i \\ 7-3i & -5i \end{bmatrix}\)


تمرین ۱. مزدوج ماتریس‌های زیر را بدست آورید.

۱. \(A = \begin{bmatrix} 1 & i & 2i+1 \\ \frac{5i+1}{2i} & 0 & \frac{2i+1}{3i} \end{bmatrix}\)

۲. \(B = \begin{bmatrix} 1+ \sqrt{2i} & 5 \\ 0 & (3i+5)(2i+1) \end{bmatrix}\)

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (460)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (470)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (561)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (476)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (483)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

آمادگی برای امتحان ریاضی عمومی- انتگرالگیری ناسره آمادگی برای امتحان ریاضی عمومی- انتگرالگ... بازدید (9825)
سوالات حل شده برای آمادگی امتحان ریاضی ع...
جزوه جبرخطی عددی دکتر کامرانیان دانشگاه صنعتی امیرکبیر 95-1394 جزوه جبرخطی عددی دکتر کامرانیان دانشگاه ... بازدید (26464)
فایل pdf اسکن شده جزوه دست نویس درس جبرخ...
جزوه مبانی آنالیز ریاضی دکتر رستمی دانشگاه صنعتی امیرکبیر 93-94 جزوه مبانی آنالیز ریاضی دکتر رستمی دانشگ... بازدید (30339)
جزوه دست نویس درس مبانی آناایز ریاضی دان...
Cambridge International AS and A Level Mathematics May June 2022 9709-2 With Solution Cambridge International AS and A Level M... بازدید (1261)
Cambridge International AS and A Level ...
مقدمه و فهرست مطالب نظریه مجموعه ها (مبانی ریاضی) لین و لین مقدمه و فهرست مطالب نظریه مجموعه ها (مبا... بازدید (21003)
مقدمه و فهرست مطالب کتاب نظریه مجموعه ها...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89513)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41889)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41371)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38881)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36044)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17288516

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا