دترمینان

مقطع تحصیلی: کارشناسی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

تعریف دترمینان: فرض کنید که \(A = [a_{ij}]\) یک ماتریس مربعی از مرتبه \(n\) به صورت زیر باشد:

\(A=\begin{bmatrix}a_{11}&a_{12}&.&.&.&a_{1n}\\.&.&.&.&.&.\\.&&&&&.\\.&&&&&.\\.&&&&&.\\a_{n1}&a_{n2}&.&.&.&a_{nn}\end{bmatrix}\)

ابتدا یادآوری کنیم که نمایش ماتریس \(A\) به صورت بردارهای ستونی به شکل زیر خواهد بود:

\(\begin{bmatrix}a_1 & .&.&. & a_n \end{bmatrix}\)

که \(a_j\) ستون jم ماتریس می‌باشد. یعنی به ازای \(1 \leq j \leq n\) برداری از مرتبه \(n \times 1\) داریم:

\(a_{j}=\begin{bmatrix}a_{1j} \\ a_{2j} \\ . \\. \\. \\ a_{nj}\end{bmatrix}\)

در این صورت دترمینان ماتریس \(A\) را به صورت زیر تعریف می‌کنیم:

\(det(A) = \sum_{\sigma \in S_n} (sgn( \sigma) \prod_{i=1}^n a_{i , \sigma_i})\)

و به صورت \( det(A) = \left| A \right| \)  نشان می‌دهیم.

در واقع فرمول بالا مجموع را بر روی تمام جایگشت‌های \(\sigma\) از مجموعه \(\{ 1 ... , n \}\) محاسبه می‌کند. نماد \(\prod_{i=1}^n a_i , \sigma_i\) در واقع حاصلضرب \(a_{1,\sigma_1}\times a_{2,\sigma_2}...\times a_{n,\sigma_n}\) را نشان می‌دهد.


مثال ۱. فرض کنید که \(A = \begin{bmatrix}1 & 2 \\3 & 5 \end{bmatrix}\) باشد. دترمینان ماتریس \(A\) را محاسبه کنید.

چون \(A\) یک ماتریس \(2 \times 2\) می‌باشد. پس \(S = \{ 1, 2 \}\) در نظر گرفته و تمام جایگشت‌های آن به صورت زیر خواهد بود:

\(S_2 = \{ \alpha = \begin{pmatrix}1 & 2 \\1 & 2 \end{pmatrix} , \beta = \begin{pmatrix}1 & 2 \\2 & 1 \end{pmatrix} \}\)

دترمینان این ماتریس با توجه به تعریف دترمینان به صورت زیر به دست خواهد آمد:

\(det(A) = det (\begin{bmatrix}1 &2 \\3 &5 \end{bmatrix}) = \sum_{\sigma \in S_2} sgn(\sigma) a_{1 , \sigma(1)}a_{2 , \sigma(2)} = sgn(\alpha) a_{1 , \alpha (1)} a_{2 , \alpha (2)} + sgn ( \beta) a_{1 , \beta(1)} a_{2  , \beta(2)}\)

حال با توجه به مفاهیم جایگشت‌های زوج و فرد داریم:

\(sgn(\alpha) =1,\:\:\: sgn( \beta) = -1\)

و از طرفی داریم:

\(\alpha(1) = 1 ,\:\: \alpha(2) = 2\)

\(\beta(1) = 2 ,\:\: \beta(2) = 1\)

پس در نتیجه دترمینان این ماتریس برابر خواهد بود با

\(det(A) = 1 \times a_{11} a_{22} + (-1) \times a_{12}a_{22} = 1 \times 1 \times 5 - 2 \times 3 = 5 -6 = -1\)


نکته ۱. \(A = \begin{bmatrix}a_{11} & a_{12} \\a_{21} & a_{22} \end{bmatrix}\) یک ماتریس از مرتبه \( 2 \times 2\) باشد. در این صورت با توجه به تعریف دترمینان، مقدار دترمینان ماتریس \(2 \times 2\) برابر خواهد شد با

\(det(A) = a_{11}a_{22} - a_{12}a_{21}\)


تمرین ۱. دترمینان ماتریس  \(3 \times 3\) زیر را محاسبه کنید:

\(\begin{bmatrix}a_{11} & a_{12} & a_{13} \\a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}\)


تمرین ۲. دترمینان ماتریسهای زیر را محاسبه کنید.

۱. \(A = \begin{bmatrix}1 & 5 & 7 \\8 & 9 & 0 \\ 1 & 0 & 0 \end{bmatrix}\)

۲. \(B = \begin{bmatrix}1 & 5 & 3 \\2 & 1 & 4 \\ 7 & 8 & 9 \end{bmatrix}\)

۳. \(C = \begin{bmatrix}1 & 5 \\0 & 3 \end{bmatrix}\)

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل های تصادفی

پاسخ تشریحی پایانترم ریاضی عمومی دو صنعتی شریف بهمن 1395 پاسخ تشریحی پایانترم ریاضی عمومی دو صنعت... بازدید (17452)
پاسخ تشریحی آزمون پایانترم ریاضی عمومی د...
مقدمه و فهرست مطالب کتاب آمار و احتمال مقدماتی دکتر بهبودیان مقدمه و فهرست مطالب کتاب آمار و احتمال م... بازدید (18066)
مقدمه و فهرست مطالب کتاب آمار و احتمال م...
مقدمه و فهرست مطالب آنالیز عددی 1 پیام نور دکتر بابلیان مقدمه و فهرست مطالب آنالیز عددی 1 پیام ن... بازدید (19278)
نام کتاب: آنالیز عددی 1، نویسنده: دکتراس...
مقدمه و فهرست مطالب جبرخطی هافمن ترجمه جمشید فرشیدی مقدمه و فهرست مطالب جبرخطی هافمن ترجمه ج... بازدید (17753)
مقدمه و فهرست مطالب کتاب جبرخطی هافمن تر...
پاسخ تشریحی پایانترم ریاضی عمومی یک صنعتی شریف 13951030 پاسخ تشریحی پایانترم ریاضی عمومی یک صنعت... بازدید (22794)
پاسخ تشریحی آزمون پایانترم ریاضی عمومی ی...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (85407)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (40930)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (39832)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38426)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (35460)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
16557378

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا