چگونه سری مک‌لورن تابع sin (x) را محاسبه کنیم؟

مقطع تحصیلی: کارشناسی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

چگونه سری مک‌لورن تابع \( \sin (x) \) را محاسبه کنیم؟

محاسبه سری مک‌لورن تابع \( \sin (x) \) به سادگی از طریق تعریف انجام می‌شود. بنابراین مشتقات تابع را به صورت زیر محاسبه می‌کنیم.


روش محاسبه سری مک‌لورن تابع \( \sin (x) \) :

برای محاسبه سری مک‌لورن تابع \( \sin x \) ، ابتدا مقدار تابع را در نقطه \( x=0 \) به دست می‌آوریم. سپس مشتق تابع را گرفته و مقدار مشتق را در نقطه \( x=0 \) محاسبه می‌کنیم. پس از آن به ترتیب مشتق مرتبه دوم و سوم و ... را در نقطه \( x=0 \) محاسبه می کنیم. سپس مقادیر به دست آمده را در فرمول سری مک‌لورن جایگذاری کرده و سری (بسط) مک‌لورن تابع به دست خواهد آمد.

\( f(x) = \sin x \Longrightarrow f (0) = \sin (0) = 0 \)

\( f(x) = \sin x \Longrightarrow f^{\prime} (x) =  \cos (x)  \Longrightarrow f^{\prime} (0) =  \cos (0) = 1 \)

\( f^{\prime}(x) = \cos (x) \Longrightarrow f^{\prime\prime} (x) = - \sin (x)  \Longrightarrow f^{\prime\prime} (0) = - \sin (0) = 0 \)

\( f^{\prime\prime}(x) = - \sin (x) \Longrightarrow f^{(3)} (x) =  -\cos (x)  \Longrightarrow f^{(3)} (0) =  -\cos (0) = -1 \)

\( f^{(3)}(x) = - \cos (x) \Longrightarrow f^{(4)} (x) = -(- \sin (x)) = \sin x  \Longrightarrow f^{(4)} (0) =  \sin (0) = 0 \)

و به همین ترتیب مشتق مراتب بالاتر در نقطه \( x = 0 \)  به صورت زیر تکرار خواهد شد:

\(  f^{(5)} (0) = 1  , f^{(6)} (0) = 0  , f^{(7)} (0) = -1  , f^{(8)} (0) = 0  , f^{(9)} (0) = 1  , \cdots  \)

بنابراین سری مک‌لورن تابع \( \sin x \) با جایگذاری مقادیر فوق در فرمول، به صورت زیر خواهد بود:

\( \begin{align*}  \sum_{n=0}^{\infty} f^{(n)} (0) \frac{x^{n}}{n!} &= f(0) + f^{\prime} (0) x + f^{\prime\prime} (0) \frac{x^{2}}{2!}  + f^{(3)} (0) \frac{x^{3}}{3!} + \cdots \\  &= 0 +  1 \times x +0 \times \frac{x^{2}}{2!}  -1 \times \frac{x^{3}}{3!} +0 \times \frac{x^{4}}{4!} + 1 \times \frac{x^{5}}{5!} \\ & \qquad + 0 \times \frac{x^{6}}{6!} -1 \times \frac{x^{7}}{7!} +0 \times \frac{x^{8}}{8!} + 1 \times \frac{x^{9}}{9!} + \cdots  \\ & = x -\frac{x^{3}}{3!} +  \frac{x^{5}}{5!} - \frac{x^{7}}{7!} +\frac{x^{9}}{9!} - \cdots   \end{align*} \)

بنابراین چندجمله‌ای سری مک‌لورن تابع \( f(x) = \sin x \) به صورت زیر می‌باشد: 

\( \boxed { \sin x = x -\frac{x^{3}}{3!} +  \frac{x^{5}}{5!} - \frac{x^{7}}{7!} +\frac{x^{9}}{9!} - \cdots = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n + 1}}{(2n+1)!} } \)

نظرات (0)

امتیاز 0 خارج از 5 بر اساس 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

پروژه برنامه ریزی ریاضی غیر خطی با شرایط فازی با رویکرد برش الفا در بهینه سازی تابع هدف به همراه کد گمز Gams پروژه برنامه ریزی ریاضی غیر خطی با شرایط فازی با رویکرد برش الفا در بهینه سازی تابع هدف به همراه کد گمز Gams بازدید (821)
پروژه برنامه ریزی ریاضی غیر خطی با شرایط...
کنترل سرعت با سیستم منطق فازی در وسایل نقلیه خودران به همراه کد متلب کنترل سرعت با سیستم منطق فازی در وسایل نقلیه خودران به همراه کد متلب بازدید (654)
کنترل سرعت با سیستم منطق فازی در وسایل ن...
 حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل پنجم حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل پنجم بازدید (1808)
حل کلیه تمرینهای فصل پنجم کتاب ریاضی عمو...
جزوه تایپ شده تحقیق در عملیات ۲ دانشگاه پیام نور - دکتر درویشی جزوه تایپ شده تحقیق در عملیات ۲ دانشگاه پیام نور - دکتر درویشی بازدید (1120)
جزوه تایپ شده تحقیق در عملیات ۲ دکتر ...
جزوه تایپ شده تحقیق در عملیات ۱ دانشگاه پیام نور - دکتر درویشی جزوه تایپ شده تحقیق در عملیات ۱ دانشگاه پیام نور - دکتر درویشی بازدید (962)
جزوه تایپ شده تحقیق در عملیات ۱ دکتر د...

فایل های تصادفی

پاسخ تشریحی آزمون پایانی هندسه دهم 1396 خرداد کاشان پاسخ تشریحی آزمون پایانی هندسه دهم 1396 ... بازدید (10502)
پاسخ تشریحی آزمون پایانی هندسه دوره دهم ...
پاسخ تشریحی آزمون شماره 4 آمار و احتمال پایه یازدهم پاسخ تشریحی آزمون شماره 4 آمار و احتمال ... بازدید (8358)
پاسخ سوالات آمار و احتمال پایه یازدهم دب...
 جزوه آنالیز ریاضی 1 دانشگاه اصفهان 92-1391 جزوه آنالیز ریاضی 1 دانشگاه اصفهان 92-1... بازدید (18829)
جزوه آنالیز ریاضی 1 دانشگاه اصفهان سال 9...
مبانی ریاضیات، استیوارت، تال، مقدمه و فهرست مطالب مبانی ریاضیات، استیوارت، تال، مقدمه و فه... بازدید (17576)
مقدمه و فهرست مطالب کتاب مبانی ریاضیات، ...
جزوه جبر 2 دکتر بهرامیان دانشگاه کاشان جزوه جبر 2 دکتر بهرامیان دانشگاه کاشان... بازدید (16362)
جزوه کامل جبر 2 دکتر بهرامیان دانشگاه کا...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (70165)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (38950)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (36530)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (33002)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (32743)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها با وبگذر

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا