چگونه سری مک‌لورن تابع sin (x) را محاسبه کنیم؟

مقطع تحصیلی: کارشناسی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

چگونه سری مک‌لورن تابع \( \sin (x) \) را محاسبه کنیم؟

محاسبه سری مک‌لورن تابع \( \sin (x) \) به سادگی از طریق تعریف انجام می‌شود. بنابراین مشتقات تابع را به صورت زیر محاسبه می‌کنیم.


روش محاسبه سری مک‌لورن تابع \( \sin (x) \) :

برای محاسبه سری مک‌لورن تابع \( \sin x \) ، ابتدا مقدار تابع را در نقطه \( x=0 \) به دست می‌آوریم. سپس مشتق تابع را گرفته و مقدار مشتق را در نقطه \( x=0 \) محاسبه می‌کنیم. پس از آن به ترتیب مشتق مرتبه دوم و سوم و ... را در نقطه \( x=0 \) محاسبه می کنیم. سپس مقادیر به دست آمده را در فرمول سری مک‌لورن جایگذاری کرده و سری (بسط) مک‌لورن تابع به دست خواهد آمد.

\( f(x) = \sin x \Longrightarrow f (0) = \sin (0) = 0 \)

\( f(x) = \sin x \Longrightarrow f^{\prime} (x) =  \cos (x)  \Longrightarrow f^{\prime} (0) =  \cos (0) = 1 \)

\( f^{\prime}(x) = \cos (x) \Longrightarrow f^{\prime\prime} (x) = - \sin (x)  \Longrightarrow f^{\prime\prime} (0) = - \sin (0) = 0 \)

\( f^{\prime\prime}(x) = - \sin (x) \Longrightarrow f^{(3)} (x) =  -\cos (x)  \Longrightarrow f^{(3)} (0) =  -\cos (0) = -1 \)

\( f^{(3)}(x) = - \cos (x) \Longrightarrow f^{(4)} (x) = -(- \sin (x)) = \sin x  \Longrightarrow f^{(4)} (0) =  \sin (0) = 0 \)

و به همین ترتیب مشتق مراتب بالاتر در نقطه \( x = 0 \)  به صورت زیر تکرار خواهد شد:

\(  f^{(5)} (0) = 1  , f^{(6)} (0) = 0  , f^{(7)} (0) = -1  , f^{(8)} (0) = 0  , f^{(9)} (0) = 1  , \cdots  \)

بنابراین سری مک‌لورن تابع \( \sin x \) با جایگذاری مقادیر فوق در فرمول، به صورت زیر خواهد بود:

\( \begin{align*}  \sum_{n=0}^{\infty} f^{(n)} (0) \frac{x^{n}}{n!} &= f(0) + f^{\prime} (0) x + f^{\prime\prime} (0) \frac{x^{2}}{2!}  + f^{(3)} (0) \frac{x^{3}}{3!} + \cdots \\  &= 0 +  1 \times x +0 \times \frac{x^{2}}{2!}  -1 \times \frac{x^{3}}{3!} +0 \times \frac{x^{4}}{4!} + 1 \times \frac{x^{5}}{5!} \\ & \qquad + 0 \times \frac{x^{6}}{6!} -1 \times \frac{x^{7}}{7!} +0 \times \frac{x^{8}}{8!} + 1 \times \frac{x^{9}}{9!} + \cdots  \\ & = x -\frac{x^{3}}{3!} +  \frac{x^{5}}{5!} - \frac{x^{7}}{7!} +\frac{x^{9}}{9!} - \cdots   \end{align*} \)

بنابراین چندجمله‌ای سری مک‌لورن تابع \( f(x) = \sin x \) به صورت زیر می‌باشد: 

\( \boxed { \sin x = x -\frac{x^{3}}{3!} +  \frac{x^{5}}{5!} - \frac{x^{7}}{7!} +\frac{x^{9}}{9!} - \cdots = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n + 1}}{(2n+1)!} } \)

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

جزوه مبانی آنالیز ریاضی فصل دنباله و سری ها استاد برزور جزوه مبانی آنالیز ریاضی فصل دنباله و سری ها استاد برزور بازدید (112)
جزوه مبانی آنالیز ریاضی فصل دنباله و سری...
پاسخ تشریحی پایان ترم ریاضی عمومی یک دانشگاه صنعتی شریف خرداد 1401 پاسخ تشریحی پایان ترم ریاضی عمومی یک دانشگاه صنعتی شریف خرداد 1401 بازدید (187)
پاسخ تشریحی پایان ترم ریاضی عمومی یک دان...
پاسخ تشریحی پایان ترم ریاضی عمومی یک دانشگاه صنعتی شریف خرداد ماه ۱۴۰۰ پاسخ تشریحی پایان ترم ریاضی عمومی یک دانشگاه صنعتی شریف خرداد ماه ۱۴۰۰ بازدید (121)
پاسخ تشریحی پایان ترم ریاضی عمومی یک دان...
پاسخ تشریحی پایانترم ریاضی عمومی ۱ دانشگاه صنعتی شریف دی 1398 پاسخ تشریحی پایانترم ریاضی عمومی ۱ دانشگاه صنعتی شریف دی 1398 بازدید (40)
پاسخ تشریحی پایانترم ریاضی عمومی یک دانش...
حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل چهارم کاربردهای مشتق حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل چهارم کاربردهای مشتق بازدید (188)
حل کلیه تمرینهای فصل چهارم کاربردهای مشت...

فایل های تصادفی

جزوه سری های فوریه - استاد برزور جزوه سری های فوریه - استاد برزور... بازدید (13991)
جزوه دست نویس سری های فوریه با مثال های ...
جزوه تحقیق در عملیات 1 دکتر عشقی دانشگاه صنعتی شریف جزوه تحقیق در عملیات 1 دکتر عشقی دانشگاه... بازدید (17298)
جزوه دست نویس تحقیق در عملیات 1 دکتر عشق...
پاسخ تشریحی آزمون پایان ترم محاسبات عددی دانشگاه صنعتی شریف آذر ماه 1395 پاسخ تشریحی آزمون پایان ترم محاسبات عددی... بازدید (12143)
پاسخ تشریحی آزمون پایان ترم محاسبات عددی...
فایل ورد(word) شماره ۱ سوالات ریاضی پایه چهارم فصل دوم درس اول شناخت کسرها فایل ورد(word) شماره ۱ سوالات ریاضی پایه... بازدید (47)
فایل ورد(word) شماره ۱ سوالات ریاضی پایه...
پاسخ تشریحی آزمون پایانی هندسه دهم 1396 خرداد کاشان پاسخ تشریحی آزمون پایانی هندسه دهم 1396 ... بازدید (10714)
پاسخ تشریحی آزمون پایانی هندسه دوره دهم ...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (72650)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (39190)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (36771)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (33165)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (32938)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
14141878

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا