ویژگی‌‌های ماتریس‌های هرمیتی و هرمیتی کج

مقطع تحصیلی: عمومی

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

ویژگی‌‌های ماتریس‌های هرمیتی و هرمیتی کج

 در این مطلب سعی داریم ویژگی‌هایی که بر روی ماتریس‌های هرمیتی و هرمیتی کج را بررسی کنیم. 

ویژگی ۱. اگر A یک ماتریس مربعی از مرتبه \(n \times n\) باشد. در اینصورت عبارات زیر را داریم: 

  • ماتریس \(A+\overline{A^t}\) یک ماتریس هرمیتی است. زیرا داریم: 

\(\overline{(A+ \overline{A^t})^t}= \overline{A^t + (\overline{A^t})^t}=\overline{A^t} + \overline{\overline{(A^t)^t}}= \overline{A^t} + \overline{\overline{A}}= \overline{A^t} + A\)

در نتیجه ماتریس A یک ماتریس هرمیتی است. 

  • ماتریس \(A-\overline{A^t}\) یک ماتریس هرمیتی کج است. زیرا داریم: 

\(\overline{(A-\overline{A^t})^t}= \overline{A^t - (\overline{A^t})^t}=\overline{A^t} - \overline{(\overline{A^t})^t}=\overline{A^t} - \overline{\overline{(A^t)^t}}=\overline{A^t} - \overline{\overline{A}}=\overline{A^t} - A=-(A-\overline{A^t})\)


مثال ۱. فرض کنید که A یک  ماتریس مربعی به شکل زیر باشد. نشان دهید که \(A+\overline{A^t}\)  و \(A- \overline{A^t}\) ماتریس هرمیتی و ماتریس هرمیتی کج می‌باشند.

\(A=\begin{bmatrix}1&i\\0&2 \end{bmatrix}\)

برای اینکه نشان دهیم ماتریسهای \(A+\overline{A^t}\) و \(A-\overline{A^t}\) ماتریس هرمیتی و ماتریس هرمیتی کج هستند، اینگونه عمل می‌کنیم:

 \(A^t= \begin{bmatrix} 1&0\\i&2\end{bmatrix}\) ⇒ \(\overline{A^t}=\begin{bmatrix}1&0\\-i&2\end{bmatrix}\) ⇒ \(A+ \overline{A^t}=\begin{bmatrix}1&i\\0&2\end{bmatrix} + \begin{bmatrix} 1&0\\-i&2 \end{bmatrix}=\begin{bmatrix} 2&i\\-i&4\end{bmatrix}=C\)

حال نشان می‌دهیم که \(A+\overline{A^t}\) هرمیتی است. لذا داریم:

\(C^t =\begin{bmatrix}2&-i\\i&4\end{bmatrix}\) ⇒ \(\overline{C^t}=\begin{bmatrix}2&i\\-i&4\end{bmatrix}=C\)

لذا یک ماتریس هرمیتی است. 

حال ماتریس \(A-\overline{A^t}\) را به دست می‌آوریم:

\(A-\overline{A^t}=\begin{bmatrix}1&i\\0&2\end{bmatrix} - \begin{bmatrix}1&0\\-i&2\end{bmatrix}=\begin{bmatrix}2&i\\-i&4\end{bmatrix}=D\)

بررسی می‌کنیم که ماتریس حاصل شده یک ماتریس هرمیتی کج است. پس داریم:

\(D^t=\begin{bmatrix}2&-i\\i&4\end{bmatrix}\) ⇒ \(\overline{D^t}=\begin{bmatrix}2&i\\-i&4\end{bmatrix}=D\)

پس یک ماتریس هرمیتی کج است. 


ویژگی ۲. فرض کنید که A یک ماتریس مربعی از مرتبه \(n \times n\) با درایه‌های مختلط باشد. در اینصورت این ماتریس را می‌توان به شکل مجموع دو ماتریس هرمیتی \(\frac{1}{2}(A + \overline{A^t})\) و ماتریس هرمیتی کج \(\frac{1}{2}(A-\overline{A^t})\) نوشت. 

تمرین ۱. نشان دهید که ماتریسهای زیر را می‌توان برحسب مجموع دو ماتریس به شکل ویژگی ۲ بیان نمود. 

۱. \(A=\begin{bmatrix}1&i&2\\3&i+1&5\\i&3&4\end{bmatrix}\)

۲. \(B=\begin{bmatrix}i&i+1\\2i+1&5i\end{bmatrix}\)


ویژگی ۳. فرض کنید که A یک ماتریس مربعی از مرتبه \(n \times n\) باشد. در اینصورت داریم:

  • اگر ماتریس A یک ماتریس هرمیتی باشد. آنگاه \(\overline{A}\) یک ماتریس هرمیتی است. زیرا از اینکه A ماتریس هرمیتی است، داریم:

\(\overline{A^t}=A\)

در نتیجه \(\overline{\overline{A}^t}= \overline{A}\). پس \(\overline{A}\) یک ماتریس هرمیتی است. 

  • اگر ماتریس A یک ماتریس هرمیتی کج باشد. آنگاه \(\overline{A}\) یک ماتربس هرمیتی کج است. زیرا از اینکه A یک ماتریس هرمیتی است، داریم:

\(\overline{A^t}= -A\)

در نتیجه \(\overline{\overline{A}^t}=-\overline{A}\). پس \(\overline{A}\) یک ماتریس هرمیتی کج است .


تمرین ۲. نشان دهید که ماتریسهای \(\overline{A}\)  و \(\overline{B}\) ماتریس‌های هرمیتی و هرمیتی کج است. 

  • ۱. \(A=\begin{bmatrix}1&i&0\\-i&2&-2i\\0&2i&3\end{bmatrix}\) 
  • ۲. \(B=\begin{bmatrix}i&1-i\\-1-i&3i\end{bmatrix}\)

ویژگی ۴. فرض کنید که A یک ماتریس حقیقی و پادمتقارن یا مختلط و هرمیتی کج باشد. آنگاه \(±iA\) یک ماتریس هرمیتی است. 

تمرین ۳. نشان دهید که ویژگی ۴ برقرار است.


 ویژگی ۵. فرض کنید که A یک ماتریس مربعی مختلط از مرتبه \(n\times n\) و هرمیتی باشد. در اینصورت ماتریسهای زیر هرمیتی هستند. 

\(A+\overline{A^t}\)      

 \(A\overline{A^t}\)   

  \(\overline{A^t}A\)


مثال ۲. فرض کنید که A یک ماتریس هرمیتی مختلط به شکل زیر باشد. ویژگی ۵ را بررسی کنید. 

\(A=\begin{bmatrix}i&i+1\\2i&3i\end{bmatrix}\)

ابتدا نشان می‌دهیم که \(\overline{A^t}A\)  یک ماتریس هرمیتی است. برای این موضوع داریم:

\(A^t=\begin{bmatrix}i&2i\\i+1&3i\end{bmatrix}\) ⇒ \(\overline{A^t}= \begin{bmatrix}-i&-2i\\-i+1&-3i\end{bmatrix}\)

⇒ \(\overline{A^t}A=\begin{bmatrix}-i&-2i\\-i+1&-3i\end{bmatrix}\begin{bmatrix}i&i+1\\2i&3i\end{bmatrix}=\begin{bmatrix}1+4&1-i+6\\1+i+6&1+1+9\end{bmatrix}=\begin{bmatrix}5&7-i\\7+i&11\end{bmatrix}=C\)

که C یک ماتریس هرمیتی است. به عنوان تمرین ثابت کنید که \(A\overline{A^t}\) و \(A + \overline{A^t}\) ماتریس‌های هرمیتی هستند.


ویژگی ۶. فرض کنید که A یک ماتریس مربعی از مرتبه \(n \times n\) و هرمیتی باشد. در اینصورت A را می‌توان به شکل منحصر به فردی چون \(B+iC\) نوشت که در آن B یک ماتریس متقارن و C یک ماتریس پادمتقارن حقیقی است. 


مثال ۳. فرض کنید که A یک ماتریس به شکل زیر باشد. نشان دهید ویژگی ۶ برقرار است. 

\(A=\begin{bmatrix}2&i\\-i&3\end{bmatrix} \)⇒ \(A=\begin{bmatrix}2&0\\0&3\end{bmatrix} + i\begin{bmatrix}0&1\\-1&0\end{bmatrix}=B+iC\)

که در آن B یک  ماتریس متقارن و C یک ماتریس پادمتقارن است. 


ویژگی ۷. فرض کنید که A یک ماتریس مربعی از مرتبه \(n\times n\) و هرمیتی کج باشد. در اینصورت می‌توان  ماتریسهای B و C که منحصر به فرد هستند را به گونه‌ای یافت که \(A=B+iC\) باشد، که در آن B ماتریس پادمتقارن و C ماتریس متقارن حقیقی است. 


تمرین ۴. با یک مثال ویژگی ۷ رانشان دهید. 

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (458)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (467)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (560)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (474)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (482)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

راهنما و تشریح المسائل معادلات دیفرانسیل معمولی و کاربردهای آن، جورج اف سیمونز، لطفی، مهدیانی راهنما و تشریح المسائل معادلات دیفرانسیل... بازدید (7992)
کتاب راهنما و حل المسائل معادلات دیفرانس...
 Cambridge International AS and A Level Mathematics May June 2023 9709-1 With Solution Cambridge International AS and A Level ... بازدید (1408)
Cambridge International AS and A Level ...
فرم ماتریسی رگرسیون و به همراه مثال عددی و مسأله حل شده در نرم افزار متمتیکا (Mathematica) فرم ماتریسی رگرسیون و به همراه مثال عددی... بازدید (3023)
فایل فرم ماتریسی رگرسیون و محاسبات آن به...
نمونه سوال ریاضی پایه ششم فصل ششم تناسب و درصد- فایل word شماره ۱ نمونه سوال ریاضی پایه ششم فصل ششم تناسب ... بازدید (4176)
نمونه سوال ریاضی پایه ششم فصل ششم تناسب ...
نظریه گراف ها و کابردهای آن، باندی نظریه گراف ها و کابردهای آن، باندی... بازدید (24039)
Geraph Theory ، مترجم حمید ضرابی زاده...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89510)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41888)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41370)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38880)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36042)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

مطالب تصادفی

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17287825

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا