سری تیلور

مقطع تحصیلی: عمومی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

سری تیلور چیست؟

سری تیلور یک چندجمله‌ای از درجه نامتناهی است و برای نمایش توابع مختلفی که خودشان چندجمله‌ای نیستند، استفاده می‌شود.

تعریف سری تیلور :

فرض کنید \( f(x) \) یک تابع حقیقی است که در نقطه \( x = a \)‌ بی‌نهایت بار مشتق پذیر می‌باشد. سری تیلور تابع \( f(x) \)  را در نقطه‌ی \( x = a \) به صورت زیر ارائه می‌دهد:

\( \sum_{n=0}^{\infty} f^{(n)} (a) \frac{(x-a)^{n}}{n!} = f(a) + f^{\prime} (a) (x-a) + f^{\prime\prime} (a) \frac{(x-a)^{2}}{2!} + f^{(3)} (a) \frac{(x-a)^{3}}{3!} + \cdots\)

که به آن سری تیلور تابع \( f(x) \)‌ در نقطه \( a \)‌ می‌گوییم.

توجه داشته باشید که در فرمول بالا، \( f^{(n)} (a) \) به معنی مشتق  \( n \)‌م تابع \( f(x) \)  در نقطه‌ی \( x = a \) است.

روش محاسبه سری تیلور:

برای محاسبه سری تیلور یک تابع در نقطه داده شده، ابتدا مشتق تابع را گرفته و مقدار مشتق را در آن نقطه محاسبه می‌کنیم. سپس به ترتیب مشتق مرتبه دوم و سوم و ... را در نقطه داده شده محاسبه می کنیم. سپس مقادیر به دست آمده را در فرمول بالا جایگذاری کرده و بسط تیلور تابع به دست خواهد آمد.

اکنون با یک مثال به خوبی روش کار را ببینیم.

مثال: بسط تیلور تابع \( \cos x \) را حول نقطه \( x= \pi \)‌ به دست آورید.

حل: در این مثال \( f(x) = \cos x \) و \( a = \pi \) . ابتدا مقدار تابع در این نقطه را محاسبه می کنیم و سپس مشتقات تابع را در این نقطه حساب می‌کنیم.

\( f(x) = \cos x \Longrightarrow f (\pi) = \cos (\pi) = -1 \)

\( f(x) = \cos x \Longrightarrow f^{\prime} (x) = - \sin (x)  \Longrightarrow f^{\prime} (\pi) = - \sin (\pi) = 0 \)

\( f^{\prime}(x) = - \sin (x) \Longrightarrow f^{\prime\prime} (x) = - \cos (x)  \Longrightarrow f^{\prime\prime} (\pi) = - \cos (\pi) = - (-1) = 1 \)

\( f^{\prime\prime}(x) = - \cos (x) \Longrightarrow f^{(3)} (x) =  \sin (x)  \Longrightarrow f^{(3)} (\pi) =  \sin (\pi) = 0 \)

\( f^{(3)}(x) = \sin (x) \Longrightarrow f^{(4)} (x) =  \cos (x)  \Longrightarrow f^{(4)} (\pi) =  \cos (\pi) = -1 \)

و به همین ترتیب مشتق مراتب بالاتر در نقطه \( \pi \)  به صورت زیر تکرار خواهد شد:

\(  f^{(5)} (\pi) = 0  , f^{(6)} (\pi) = 1  , f^{(7)} (\pi) = 0  , f^{(8)} (\pi) = -1  , f^{(9)} (\pi) = 0  , \cdots  \)

بنابراین سری تیلور تابع \( \cos x \) در نقطه \( x= \pi \)‌ با جایگذاری مقادیر فوق در فرمول، به صورت زیر خواهد بود:

\( \begin{align*}  \sum_{n=0}^{\infty} f^{(n)} (\pi) \frac{(x-\pi)^{n}}{n!} &= f(\pi) + f^{\prime} (\pi) (x-\pi) + f^{\prime\prime} (\pi) \frac{(x-\pi)^{2}}{2!}  + f^{(3)} (\pi) \frac{(x-\pi)^{3}}{3!} + \cdots \\  &= -1 +  (0) (x-\pi) + 1\times \frac{(x-\pi)^{2}}{2!}  + 0 \times \frac{(x-\pi)^{3}}{3!} - 1 \times \frac{(x-\pi)^{4}}{4!} + 0 \times \frac{(x-\pi)^{5}}{5!} \\ & \qquad + 1 \times \frac{(x-\pi)^{6}}{6!} + 0 \times \frac{(x-\pi)^{7}}{7!} - 1 \times \frac{(x-\pi)^{8}}{8!} + 0 \times \frac{(x-\pi)^{9}}{9!} + \cdots  \\ & = -1 +\frac{(x-\pi)^{2}}{2!} -  \frac{(x-\pi)^{4}}{4!} + \frac{(x-\pi)^{6}}{6!} -\frac{(x-\pi)^{8}}{8!} + \cdots \\ & = -1 +\frac{1}{2!} (x-\pi)^{2} -  \frac{1}{4!} (x-\pi)^{4}+ \frac{1}{6!} (x-\pi)^{6} -\frac{1}{8!} (x-\pi)^{8} + \cdots \end{align*} \)

این چندجمله‌ای سری تیلور تابع \( \cos x \) حول نقطه \( x= \pi \)‌ می‌باشد. هرچه تعداد مراتب مشتق را بیشتر کنیم، دقت تخمین سری بیشتر خواهد شد و منحنی چندجمله‌ای بر منحنی تابع منطبق‌تر خواهد شد.

در شکل زیر شما نمودار سری‌های تیلور برای تابع \( \cos x \) در نقطه \( x= 0 \)‌ نمایش داده شده است. هرچه تعداد جملات بیشتری را انتخاب کنیم، تطابق دو منحنی بر هم بیشتر خواهد شد.

نمودار سری تیلور تابع کسینوس حول نقطه x=0 در سایت ریاضیات ایران

 حالا شما سری تیلور تابع \( \cos x \) در نقطه \( x= 0 \)‌ را محاسبه کنید و با شکل بالا آن را مقایسه کنید.

تمرین ۱: سری تیلور تابع \( f(x) = e^{x} \) در نقطه \( x= 0 \)‌ بیابید.

تمرین ۲: سری تیلور تابع \( f(x) = \sin x \) در نقطه \( x= 0 \)‌ بیابید.

نظرات (0)

امتیاز 0 خارج از 5 بر اساس 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

پروژه برنامه ریزی ریاضی غیر خطی با شرایط فازی با رویکرد برش الفا در بهینه سازی تابع هدف به همراه کد گمز Gams پروژه برنامه ریزی ریاضی غیر خطی با شرایط فازی با رویکرد برش الفا در بهینه سازی تابع هدف به همراه کد گمز Gams بازدید (263)
پروژه برنامه ریزی ریاضی غیر خطی با شرایط...
کنترل سرعت با سیستم منطق فازی در وسایل نقلیه خودران به همراه کد متلب کنترل سرعت با سیستم منطق فازی در وسایل نقلیه خودران به همراه کد متلب بازدید (324)
کنترل سرعت با سیستم منطق فازی در وسایل ن...
 حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل پنجم حل تمرین کتاب ریاضی عمومی یک دکتر کرایه چیان: فصل پنجم بازدید (1018)
حل کلیه تمرینهای فصل پنجم کتاب ریاضی عمو...
جزوه تایپ شده تحقیق در عملیات ۲ دانشگاه پیام نور - دکتر درویشی جزوه تایپ شده تحقیق در عملیات ۲ دانشگاه پیام نور - دکتر درویشی بازدید (587)
جزوه تایپ شده تحقیق در عملیات ۲ دکتر ...
جزوه تایپ شده تحقیق در عملیات ۱ دانشگاه پیام نور - دکتر درویشی جزوه تایپ شده تحقیق در عملیات ۱ دانشگاه پیام نور - دکتر درویشی بازدید (569)
جزوه تایپ شده تحقیق در عملیات ۱ دکتر د...

فایل های تصادفی

جزوه ریاضی عمومی 2 صنعتی شریف دکتر فتوحی ترم دوم 96-97 جزوه ریاضی عمومی 2 صنعتی شریف دکتر فتوحی... بازدید (9778)
جزوه ریاضی عمومی دو دکتر فتوحی دانشگاه ص...
پاسخ تشریحی پایانترم معادلات دیفرانسیل امیرکبیر 13931102 پاسخ تشریحی پایانترم معادلات دیفرانسیل ا... بازدید (15297)
پاسخ تشریحی پایانترم معادلات دیفرانسیل ا...
Adomian decomposition method for solving the diffusion–convection–reaction equations Adomian decomposition method for solving... بازدید (17689)
S.A. El-Wakil, M.A. Abdou,A.Elhanbal...
جزوه آنالیز عددی پیشرفته دانشگاه صنعتی شریف استاد مهدوی امیری پاییز 95 جزوه آنالیز عددی پیشرفته دانشگاه صنعتی ش... بازدید (8299)
جزوه آنالیز عددی پیشرفته دانشگاه صنعتی ش...
مقدمه و فهرست مطالب کتاب منطق، مجموعه ها، اعداد دکتر میزاوزیری مقدمه و فهرست مطالب کتاب منطق، مجموعه ها... بازدید (15986)
مقدمه و فهرست مطالب کتاب منطق، مجموعه ها...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (68877)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (38345)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (35845)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (32468)
دانلود کامل کتاب آشنایی با نظریه گراف دو...
حافظه استاد، نوشته دکتر میرزاوزیری حافظه استاد، نوشته دکتر میرزاوزیری بازدید (32337)
حافظه استاد، نوشته دکتر میرزاوزیری چاپ...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها با وبگذر

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا