ویژگی ماتریس‌های متقارن

مقطع تحصیلی: دوره دوم متوسطه

رای دهی: 5 / 5

فعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستارهفعال سازی ستاره
 

ویژگی‌ ماتریس‌های متقارن: در این مطلب سعی داریم، ویژگی‌‌هایی را که بر روی ماتریس‌های متقارن صدق می‌کنند، را بیان کنیم.

ویژگی ۱. فرض کنید که \(A\) و \(B\) دو ماتریس مربعی و متقارن باشند. در اینصورت \( A+B \) متقارن خواهد بود.

زیرا با توجه به ویژگی‌هایی که برای ترانهاده یک ماتریس و  ماتریس‌های متقارن \(A\) و \(B\)  گفته شد، داریم:

\( (A+B)^{T} = A^{T} + B^{T} = A + B \)


مثال ۱- فرض کنید که دو ماتریس متقارن \(A\) و \(B\) به صورت زیر بیان شده باشند.

\( A = \begin{bmatrix} 1 & 5 \\ 0 & 2 \end{bmatrix} \)

\( B = \begin{bmatrix} i & o \\ 0 & i \end{bmatrix} \)

در اینصورت \( A + B \) متقارن نخواهد شد. زیرا با توجه به ویژگی ۱، برای اینکه مجموع دو ماتریس متقارن باشد، باید هر دو ماتریس‌ \(A\) و \(B\) متقارن باشند که در این مجموع، \(B\) متقارن نیست.


ویژگی ۲. اگر A ماتریس مربعی و متقارن باشد. در اینصورت \( \lambda A \) نیز برای اسکالر \( \lambda \) متقارن خواهد شد.


تمرین ۱. فرض کنید که \( A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 5 \\ 3 & 5 & 1 \end{bmatrix} \) و \( \lambda = i \) باشد. در اینصورت آیا  \( \lambda A \) متقارن است؟


ویژگی ۳. فرض کنید که \(A\) و \(B\) دو ماتریس متقارن باشند. در اینصورت \( AB \) در حالت کلی متقارن نخواهد بود. برای اینکه دو ماتریس‌ \( AB \) متقارن باشند، حتما باید این دو ماتریس‌ تعویض پذیر باشند. با توجه به ویژگی‌های ترانهاده یک ماتریس‌ داریم:

\( (AB)^{T} = B^{T} A^{T} \)

حال چون \(A\) و \(B\) متقارن هستند، لذا \( A^{T} = A \) ،\( B^{T} = B \) و اینکه \( AB = BA \) است. پس داریم:

\( B^{T} A^{T} = BA = AB \)


مثال ۲. فرض کنید دو ماتریس‌ \(A\) و \(B\) به صورت زیر بیان شده باشند. نشان دهید که \( AB \) لزوما متقارن نیست.

فرض کنید که دو ماتریس‌ A و B را به صورت زیر تعریف کرده باشیم:

\( A = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \)

\( B = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \)

در اینصورت داریم:

⇒ \( AB = \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 6 & 3 \\ 15 & 6 \end{bmatrix} \)

⇒ \( BA = \begin{bmatrix} 0 & 3 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 15 \\ 3 & 6 \end{bmatrix} \)

پس در نتیجه \( AB \neq BA \) می‌باشد.


ویژگی ۴. فرض کنید که A یک ماتریس متقارن باشد. در اینصورت هر توانی از ماتریس‌ A هم متقارن خواهد شد. یعنی داریم:

\( \forall n \in N (A^{n})^{T} = (A^{T})^{n} = A^{n} \)


ویژگی ۵. فرض کنید که \(A\) یک ماتریس متقارن باشد، هرگاه \( f(x) \) یک تابع چندجمله‌ای به شکل زیر باشد:

\( f(x) = a_{n} x^{n} + a_{n-1} x^{n-1} + ... + a_0 \)

در اینصورت \( f(A) \) هم یک ماتریس متقارن خواهد بود.


مثال ۳. فرض کنید که \( A = \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} \) یک ماتریس متقارن باشد. همچنین تابع \( f(x) = x^2 + x \) را در نظر بگیرید. نشان دهید که \( f(A) \) هم متقارن است.

\( f(A) = A^2+A = \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 26 & 5 \\ 5 & 25 \end{bmatrix} + \begin{bmatrix} 1 & 5 \\ 5 & 0 \end{bmatrix} = \begin{bmatrix} 27 & 10 \\ 10 & 25 \end{bmatrix} \)

با توجه به تعریف ماتریس‌های متقارن می‌بینیم که ماتریس‌ حاصل شده نسبت به قطر اصلی متقارن می‌باشند.


تمرین ۲. فرض کنید که A یک ماتریس مربعی باشد. آیا ماتریس \( AA^{T} \) متقارن است؟


تمرین ۳. فرض کنید که A و B ماتریس‌های مربعی باشند. آیا ماتریس \( AB^{T} - BA^{T} \) متقارن است؟


تمرین ۴. فرض کنید که A و B ماتریس‌های مربعی باشند. آیا ماتریس \( AB^{T} + B^{T}A \) متقارن است؟


تمرین ۵. فرض کنید که \( A = \begin{bmatrix} 1 & 5 & 7 \\ 5 & 0 & i \\ 7 & i & i \end{bmatrix} \) باشد. نشان دهید که \( f(A) \) با تابع چندجمله‌ای  به‌ صورت زیر یک ماتریس متقارن است.

\( f(x) = x^3 + ix \)

نظرات (0)

امتیاز 0 از 5 از بین 0 رای
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (460)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (470)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (561)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (476)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (483)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

پاسخ تشریحی پایانترم ریاضی مهندسی دیماه 1395 دانشگاه صنعتی شریف پاسخ تشریحی پایانترم ریاضی مهندسی دیماه ... بازدید (15088)
پاسخ تشریحی پایانترم ریاضی مهندسی دیماه ...
مقدمه و فهرست مطالب کتاب معادلات دیفرانسیل با مشتقات جزئی، حصارکی، فتوحی مقدمه و فهرست مطالب کتاب معادلات دیفرانس... بازدید (17718)
مقدمه و فهرست مطالب کتاب معادلات دیفرانس...
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن... بازدید (460)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
مقدمه و فهرست مطالب کتاب منطق، مجموعه ها، اعداد دکتر میزاوزیری مقدمه و فهرست مطالب کتاب منطق، مجموعه ها... بازدید (17805)
مقدمه و فهرست مطالب کتاب منطق، مجموعه ها...
جزوه هوش مصنوعی استاد شریفی زاده ترم دوم 96-1395 جزوه هوش مصنوعی استاد شریفی زاده ترم دوم... بازدید (1652)
جزوه هوش مصنوعی استاد شریفی زاده ترم دوم...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89513)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41889)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41371)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38881)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36044)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17288525

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا