حلقه آبلی

مقطع تحصیلی: عمومی
غیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستارهغیر فعال سازی ستاره
 

تعریف حلقه‌ آبلی: فرض کنید که R همراه با دو عمل دوتایی + و . تشکیل یک حلقه بدهد. R را یک حلقه آبلی با جابه‌جایی گویند، هرگاه این حلقه نسبت به عمل دوتایی ضرب دارای ویژگی زیر باشد:

\(\forall a,b \in R;     a.b = b.a \)

این عبارت بيان می‌كند، كه اعضای حلقه R همواره نسبت به عمل دوتایی ضرب جابه‌جا شوند.


مثال۱. ثابت کنید که مجموعه \( M_{n \times n} (R) = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} | a,b,c,d \in R \} \) نسبت به عمل جمع و ضرب ماتریس‌ها تشکیل یک حلقه جابه‌جایی را نمی‌دهد.

برای اثبات این موضوع که \( M_{n \times n} (R) \) همراه با دو عمل دوتایی جمع و ضرب ماتریس‌ها تشکیل یک حلقه را می‌دهد. به گونه زیر عمل می‌کنیم.

۱. ثابت می‌کنیم که \( M_{n \times n} (R) \) نسبت به عمل دوتایی جمع یک گروه آبلی است، لذا داریم:

\(A+B \in M_{n \times n}(R)\)

\( (A+B) + C = A + (B+C) \)

  • عضوی چون \( A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \in M_{n \times n} (R) \) موجود است، به قسمی که به ازای هر ماتریس‌ \( B \in M_{ n \times n} (R) \) بگیریم، همواره داریم:

\( A+B = B+A = B \)

  • به ازای هر ماتریس‌ \( A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{n \times n} (R) \) بگیریم، ماتریسي چون \( A = \begin{bmatrix} -a & -b \\ -c & -d \end{bmatrix} \in M_{n \times n} (R) \) موجود است، به قسمی که داریم:

 \( A+B = 0 = B + A \)

۲) مجموعه \( M_{n \times n} (R) \) نسبت به عمل دوتایی  ضرب ماتریسی دارای ویژگی‌های زیر می‌باشد:

۳) در نهایت عمل دوتایی ضرب بر روی عمل دوتایی جمع ماتریسی خاصیت پخشپذیر بودن را دارد. به عنوان تمرین ثابت کنید.

با استفاده از ویژگی های بالا ثابت شد که مجموعه \( M_{n \times n} (R) \) یک حلقه است، اما این حلقه  یک حلقه جابه‌جایی نیست، زیرا اگر دو ماتریس A و B زیر را داشته باشیم، داریم:

\( A = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix} \),   \( B = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \)

⇒ \( BA = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} . \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix}\)

⇒ \( AB = \begin{bmatrix} 5 & 2 \\ 3 & 1 \end{bmatrix} . \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\)

در نتیجه \( AB \neq BA \) خواهد شد. پس جابه‌جایی نیست.


تمرین ۱. ثابت کنید که مجموعه زیر با دو عمل دوتایی تعریف شده یک حلقه جابه‌جایی است.

\( R [n] = \{ (a_0 , ... , a_{n} , ... ) | a_1 \in R , a_{i} = 0 \} \)

\( ( a_0 , a_1 , ... , a_{n} , ... ) + ( b_0 , b_1 , ... , b_{n} , ... ) = (a_0 + b_0 , a_1 + b_1 , ... , a_{n} + b_{n} , ... ) \)

\( ( a_0 , a_1 , ... , a_{n} , ...) . ( b_0 , b_1 , ... , b_{n} , ... ) = ( C_0 , C_1 , ... , C_{n} , ... ) \)

که در آن داریم \( C_{i} = \sum_{k=0} ^{i} a_{k} b_{i-k} \) 


تمرین ۲. آیا مجموعه \( nZ = \{ nk | k \in Z \} \) دو عمل دوتایی زیر یک حلقه جابه‌جایی است یا خير؟

\( nk_1 + nk_2 = n(k_1 + k_2) \)

\( (nk_1) (nk_2) = nk_3 = n(nk_1 k_2) \)

نظرات (1)

امتیاز 0 از 5 از بین 0 رای
این نظر توسط مجری سایت به حداقل رسیده است

با سلام و احترام. با توجه به اینکه بسیاری از دانشجویان از این مطالب ممکن است استفاده کنند بهتر است کمی در استفاده از اصطلاحات و مفاهیم اصلی دقت عمل بیشتری به عمل امده و نویسنده مطلب، مرجع مورد استفاده را اعلام نماید. اگرچه در مفهوم گروه بین...

با سلام و احترام. با توجه به اینکه بسیاری از دانشجویان از این مطالب ممکن است استفاده کنند بهتر است کمی در استفاده از اصطلاحات و مفاهیم اصلی دقت عمل بیشتری به عمل امده و نویسنده مطلب، مرجع مورد استفاده را اعلام نماید. اگرچه در مفهوم گروه بین جابجایی وآبلی فرقی نیست ولی در مفهوم حلقه ها تعریف حلقه جابجایی و حلقه آبلی با هم فرق دارند. تعریف بالا مربوط به حلقه های جابجایی یا تعویض پذیر می باشد.

ادامه مطلب
مهرداد آزادی
هیچ نظری در اینجا وجود ندارد

نظر خود را اضافه کنید.

  1. ارسال نظر بعنوان یک مهمان ثبت نام یا ورود به حساب کاربری خود.
به این پست امتیاز دهید:
0 کاراکتر ها
پیوست ها (0 / 3)
مکان خود را به اشتراک بگذارید
عبارت تصویر زیر را بازنویسی کنید. واضح نیست؟

جدیدترین محصولات

فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل pdf پاسخ سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (460)
فایل pdf پاسخ سوال ریاضی پایه ششم فصل پن...
فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ فایل word نمونه سوال ریاضی پایه ششم فصل پنجم درس اول طول و سطح- شماره ۱ بازدید (470)
فایل word نمونه سوال ریاضی پایه ششم فصل ...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۳۲۰ بازدید (561)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۸۹۰۹۲۹ بازدید (477)
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه...
پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ پاسخ تشریحی میانترم ریاضی مهندسی دانشگاه تهران ۱۳۹۳۰۸۲۹ بازدید (483)
پاسخ تشریحی نمونه سوالات میانترم ریاضی م...

فایل های تصادفی

آمادگی برای امتحان ریاضی عمومی یک - مشتق و کاربردهای آن آمادگی برای امتحان ریاضی عمومی یک - مشتق... بازدید (10353)
آمادگی برای امتحان ریاضی عمومی یک - مشتق...
 ریاضی پایه پنجم- فصل دوم- درس سوم، مسأله‌های کسر فایل شماره ۱ نسخه WORD ریاضی پایه پنجم- فصل دوم- درس سوم، مسأل... بازدید (1379)
ریاضی پایه پنجم- فصل دوم- درس سوم، مسأل...
پاسخ تشریحی پایانترم معادلات دیفرانسیل دانشگاه صنعتی شریف 13951102 پاسخ تشریحی پایانترم معادلات دیفرانسیل د... بازدید (15965)
پاسخ تشریحی آزمون پایانترم معادلات دیفرا...
پاسخ تشریحی پایان ترم معادلات دیفرانسیل صنعتی امیرکبیر دی ماه 1382 پاسخ تشریحی پایان ترم معادلات دیفرانسیل ... بازدید (16382)
جواب تشریحی کامل پایان ترم معادلات دیفرا...
پاسخ تشریحی ریاضی دهم نوبت اول 13951011 نمونه دولتی شهید علی محمدی منطقه 2 تهران پاسخ تشریحی ریاضی دهم نوبت اول 13951011 ... بازدید (17473)
پاسخ کاملا تشریحی نمونه سوال ریاضی دهم ن...

پربازدیدترین محصولات

حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین حل المسائل کتاب نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (89515)
پاسخ سوالات و تمرینات کتاب نظریه مجموعه ...
نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین نظریه مجموعه ها و کاربردهای آن (مبانی ریاضی) لین و لین بازدید (41889)
کتاب نظریه مجموعه ها و کاربردهای آن (مبا...
مثلث نوشته دکتر میرزاوزیری مثلث نوشته دکتر میرزاوزیری بازدید (41371)
کتاب مثلث دکتر میرزاوزیری ، رمز فایل www...
اشتباه سوزنبان دکتر میرزاوزیری اشتباه سوزنبان دکتر میرزاوزیری بازدید (38882)
نویسنده : دکتر مجید میرزاوزیری ؛ چاپ او...
آشنایی با نظریه گراف، دوگلاس بی وست آشنایی با نظریه گراف، دوگلاس بی وست بازدید (36045)
دانلود کامل کتاب آشنایی با نظریه گراف دو...

مطالب تصادفی

جشنواره ملی رسانه های دیجیتال

امنیت در پرداخت ها

تعداد بازدید مطالب
17289750

ارسال پیام برای ما

  Mail is not sent.   Your email has been sent.
بالا